Skip to main content
Log in

Tight combinatorial manifolds and graded Betti numbers

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

In this paper, we study the conjecture of Kühnel and Lutz, who state that a combinatorial triangulation of the product of two spheres \(\mathbb S^i \times \mathbb S^j\) with \(j \ge i\) is tight if and only if it has exactly \(i+2j+4\) vertices. To approach this conjecture, we use graded Betti numbers of Stanley–Reisner rings. By using recent results on graded Betti numbers, we prove that the only if part of the conjecture holds when \(j>2i\) and that the if part of the conjecture holds for triangulations all whose vertex links are simplicial polytopes. We also apply this algebraic approach to obtain lower bounds on the numbers of vertices and edges of triangulations of manifolds and pseudomanifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avramov, L.L., Conca, A., Iyengar, S.B.: Subadditivity of syzygies of Koszul algebras. Math. Ann. 361, 511–534 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bagchi, B.: The mu vector, Morse inequalities and a generalized lower bound theorem for locally tame combinatorial manifolds. arXiv:1405.5675

  3. Bagchi, B.: A tightness criterion for homology manifolds with or without boundary. Eur. J. Comb. 46, 10–15 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bagchi, B., Datta, B.: On stellated spheres and a tightness criterion for combinatorial manifolds. Eur. J. Comb. 36, 294–313 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnette, D.W.: The minimum number of vertices of a simple polytope. Israel J. Math. 10, 121–125 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barnette, D.W.: A proof of the lower bound conjecture for convex polytopes. Pacific J. Math. 46, 349–354 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bigatti, A.: Upper bounds for the Betti numbers of a given Hilbert function. Commun. Algebra 21, 2317–2334 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brehm, U., Kühnel, W.: Combinatorial manifolds with few vertices. Topology 26, 465–473 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bruns, W., Herzog, J.: Cohen-Macaulay rings, Revised edn. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  10. Burton, B.A., Datta, B., Singh, N., Spreer, J.: Separation index of graphs and stacked 2-spheres. arXiv:1403.5862

  11. Datta, B., Murai, S.: On stacked triangulated manifolds. arXiv:1407.6767

  12. Datta, B., Singh, N.: An infinite family of tight triangulations of manifolds. J. Comb. Theory Ser. A 120, 2148–2163 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Effenberger, F.: Stacked polytopes and tight triangulations of manifolds. J. Comb. Theory Ser. A 118, 1843–1862 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eliahou, S., Kervaire, M.: Minimal resolutions of some monomial ideals. J. Algebra 129, 1–25 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fernández-Ramos, O., Gimenez, P.: Regularity \(3\) in edge ideals associated to bipartite graphs. J. Algebraic Comb. 39, 919–937 (2014)

    Article  MATH  Google Scholar 

  16. Flores, A.: Über \(n\)-dimensionale Komplexe, die im \(R_{2n+1}\) absolut selbstverschlungen sind. Ergeb. Math. Kolloq. 6, 4–7 (1933/34)

  17. Fogelsanger, A.: The generic rigidity of minimal cycles. Ph.D. Thesis, Cornell University (1988)

  18. Herzog, J., Hibi, T.: Monomial ideals. Graduate Texts in Mathematics. Springer, London (2011)

    Book  Google Scholar 

  19. Herzog, J., Srinivasan, H.: A note on the subadditivity problem for maximal shifts in free resolutions. MSRI Proc. (to appear). arXiv:1303.6214

  20. Hulett, H.A.: Maximum Betti numbers of homogeneous ideals with a given Hilbert function. Commun. Algebra 21, 2335–2350 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kalai, G.: Rigidity and the lower bound theorem. I. Invent. Math. 88, 125–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kühnel, W.: Tight polyhedral submanifolds and tight triangulations. Lecture Notes in Math, vol. 1612. Springer, Berlin (1995)

  23. Kühnel, W., Lutz, F.H.: A census of tight triangulations. In: Discrete Geometry and Rigidity, Budapest, 1999, Period. Math. Hungar, vol. 39, pp. 161–183 (1999)

  24. Lutz, F.H.: Triangulated manifolds with few vertices: combinatorial manifolds. arXiv:math.0506372

  25. Lutz, F.H., Sulanke, T., Swartz, E.: \(f\)-vectors of \(3\)-manifolds. Electron. J. Comb. 16, 33 (2009) (Research paper R13)

  26. Macaulay, F.S.: Some properties of enumeration in the theory of modular systems. Proc. Lond. Math. Soc. 26, 531–555 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  27. Migliore, J., Nagel, U.: Reduced arithmetically Gorenstein* schemes and simplicial polytopes with maximal Betti numbers. Adv. Math. 180, 1–63 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Murai, S., Nevo, E.: On the generalized lower bound conjecture for polytopes and spheres. Acta Math. 210, 185–202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Murai, S., Nevo, E.: On \(r\)-stacked triangulated manifolds. J. Algebraic Comb. 39, 373–388 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Novik, I., Swartz, E.: Socles of Buchsbaum modules, complexes and posets. Adv. Math. 222, 2059–2084 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Novik, I., Swartz, E.: Applications of Klee’s Dehn-Sommerville relations. Discrete Comput. Geom. 42, 261–276 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Novik, I., Swartz, E.: Face numbers of pseudomanifolds with isolated singularities. Math. Scand. 110, 198–222 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Pardue, K.: Deformation classes of graded modules and maximal Betti numbers. Ill. J. Math. 40, 564–585 (1996)

    MathSciNet  MATH  Google Scholar 

  34. Spanier, E.H.: Algebraic topology. Springer, New York (1981)

    Book  Google Scholar 

  35. Spreer, J.: A necessary condition for the tightness of odd-dimensional combinatorial manifolds. arXiv:1405.5962

  36. Stanley, R.P.: Combinatorics and commutative algebra, 2nd edn. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

  37. Swartz, E.: Thirty-five years and counting. arXiv:1411.0987

  38. Tay, T.-S.: Lower-bound theorems for pseudomanifolds. Discrete Comput. Geom. 13, 203–216 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Terai, N., Hibi, T.: Computation of Betti numbers of monomial ideals associated with stacked polytopes. Manuscripta Math. 92, 447–453 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. van Kampen, E.R.: Komplexe in euklidischen Räumen. Abh. Math. Sem. Univ. Humburg 9(72–78), 152–153 (1933)

    Article  Google Scholar 

  41. Ziegler, G.M.: Lectures on polytopes. Graduate Texts in Mathematics, vol. 152. Springer (2007)

Download references

Acknowledgments

We would like to thank Isabella Novik for helpful comments on an earlier version of this paper. The author was partially supported by JSPS KAKENHI 25400043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Murai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murai, S. Tight combinatorial manifolds and graded Betti numbers. Collect. Math. 66, 367–386 (2015). https://doi.org/10.1007/s13348-015-0137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-015-0137-z

Keywords

Navigation