Skip to main content
Log in

Crack detection in prestressed concrete structures by measuring their natural frequencies

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

When inspecting the health of a civil structure, it is important to have efficient techniques to detect the possible presence of structural damage. This work deals with the detection of damage in prestressed concrete structures, which are widely used in road bridges and long span slabs, among others. Concrete structures can be affected by different pathologies, with the transverse cracks beingone of the most dangerous damages, since they involve a localized reduction of the flexural rigidity of the structure. Such cracks change both the static and dynamic behavior of the structure. In this paper, an inverse method of damage detection is applied on two experimental beams built in the laboratory, from the measurement of the first three natural frequencies of vibration. An algorithm for solving the system of equations has been developed by the authors. Explicit equations were obtained to calculate both the crack position and its depth. The predicted damages by the algorithm have been in good agreement with the real damages of the experimental models. An important aspect of this methodology for crack detection is the simplicity of its experimental implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Karayannis CG, Chalioris CE (2013) Design of partially prestressed concrete beams based on the cracking control provisions. Eng Struct 48:402–416. https://doi.org/10.1016/j.engstruct.2012.09.020

    Article  Google Scholar 

  2. Yao Y, Tung S-TE, Glisic B (2014) Crack detection and characterization techniques—an overview. Struct Control Health Monit 21:1387–1413. https://doi.org/10.1002/stc.1655

    Article  Google Scholar 

  3. Dai L, Wang L, Zhang J, Zhang X (2016) A global model for corrosion-induced cracking in prestressed concrete structures. Eng Fail Anal 62:263–275. https://doi.org/10.1016/j.engfailanal.2016.01.013

    Article  Google Scholar 

  4. Darmawan SM, Stewart MG (2007) Spatial time-dependent reliability analysis of corroding pretensioned prestressed concrete bridge girders. Struct Saf 29:16–31. https://doi.org/10.1016/j.strusafe.2005.11.002

    Article  Google Scholar 

  5. Lee BY, Koh KT, Ismail MA, Ryu HS, Kwon SJ (2017) Corrosion and strength behaviors in prestressed tendon under various tensile stress and impressed current conditions. Adv Mater Sci Eng. https://doi.org/10.1155/2017/8575816

    Google Scholar 

  6. Calavera J (2005) Patología de Estructuras de Hormigón Armado y Pretensado, 2nd edn. Intemac Ediciones, Madrid

    Google Scholar 

  7. CEB-FIP (1993) Model code 1990: Design code. T. Telford, London

  8. Comisión Permanente del Hormigón (2011) EHE-08 Instrucción de Hormigón Estructural (5th ed.) Ministerio de Fomento, Madrid

  9. Centro de Investigación de los Reglamentos Nacionales de Seguridad para las Obras Civiles (2005) CIRSOC 201 Reglamento Argentino de Estructuras de Hormigón. INTI, Buenos Aires

  10. American Concrete Institute (2014) ACI 318-14: building code requirements for structural concrete and commentary. American Concrete Institute, Farmington Hills

    Google Scholar 

  11. Unger JF, Teughels A, De Roeck G (2006) System identification and damage detection of a prestressed concrete beam. J Struct Eng 132(11):1691–1698. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:11(1691)

    Article  Google Scholar 

  12. Anifantis N, Dimarogonas A (1983) Stability of columns with a single crack subjected to follower and vertical loads. J Solids Struct 19(4):281–291. https://doi.org/10.1016/0020-7683(83)90027-6

    Article  MATH  Google Scholar 

  13. Ostachowicz WM, Krawczuk M (1991) Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J Sound Vib 150:191–201. https://doi.org/10.1016/0022-460X(91)90615-Q

    Article  Google Scholar 

  14. Rizos PF, Aspragathos N, Dimarogonas AD (1990) Identification of crack location and magnitude in a cantilever beam from the vibration modes. J. Sound Vibration 138(3):381–388. https://doi.org/10.1016/0022-460X(90)90593-O

    Article  Google Scholar 

  15. Liang RY, Choy FK, Hu J (1991) Detection of cracks in beam structures using measurements of natural frequencies. J Franklin Inst 328:505–518. https://doi.org/10.1016/0016-0032(91)90023-V

    Article  MATH  Google Scholar 

  16. Nandwana BP, Maiti SK (1997) Modelling of vibration of beam in presence of inclined edge or internal crack for its possible detection based on frequency measurements. Eng Fract Mech 58:193–205. https://doi.org/10.1016/S0013-7944(97)00078-7

    Article  Google Scholar 

  17. Rosales MB, Filipich CP, Buezas FS (2009) Crack detection in beam-like structures. Eng Struct 31:2257–2264. https://doi.org/10.1016/j.engstruct.2009.04.007

    Article  Google Scholar 

  18. Orbanich CJ, Rosales MB, Ortega NF, Filipich CP (2009) Detección de fallas en vigas de fundación elástica mediante el método inverso. Mecánica Computacional XXVIII:613–631

    Google Scholar 

  19. Mazanoglu K, Sabuncu M (2012) A frequency based algorithm for identification of single and double cracked beams via a statistical approach used in experiment. Mech Syst Signal Process 30:168–185. https://doi.org/10.1016/j.ymssp.2012.02.004

    Article  Google Scholar 

  20. Barad KH, Sharma DS, Vyas V (2013) Crack detection in cantilever beam by frequency based method. Procedia Eng 51:770–775. https://doi.org/10.1016/j.proeng.2013.01.110

    Article  Google Scholar 

  21. Rao SS (2007) Vibration of continuous systems. Wiley, Hoboken

    Google Scholar 

  22. Blevins RD (2001) Formulas for natural frequency and mode shape. Krieger Publishing Company, UK

    Google Scholar 

  23. Wolfram S (2015) An elementary introduction to the wolfram language. Wolfram Media, Inc

  24. Vernier (2008) Labquest interfase. Software and Technology, Beaverton, OR, USA

  25. Vernier (2008) Logger pro 3.6.1. Software and Technology, Beaverton, OR, USA

  26. Nyquist H (1928) Certain topics in telegraph transmission theory. Trans AIEE 47:617–644. https://doi.org/10.1109/T-AIEE.1928.5055024

    Google Scholar 

  27. Shannon E (1949) Communication in the presence of noise. Proc Inst Radio Eng 37:10–21. https://doi.org/10.1109/JRPROC.1949.232969

    MathSciNet  Google Scholar 

  28. Clough RW, Penzien J (1995) Dynamics of structures, 2nd edn. McGrawHill, New York

    MATH  Google Scholar 

  29. COMSOL (2013) COMSOL Multiphysics User’s Guide, Version 4.4

  30. Jason L, Ghavamianc S, Courtois A (2010) Truss vs solid modeling of tendons in prestressed concrete structures: consequences on mechanical capacity of a representative structural volume. Eng Struct 32:1779–1790. https://doi.org/10.1016/j.engstruct.2010.02.029

    Article  Google Scholar 

  31. Yapar O, Basu PK, Nordendale N (2015) Accurate finite element modeling of pretensioned prestressed concrete beams. Eng Struct 101:163–178. https://doi.org/10.1016/j.engstruct.2015.07.018

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Engineering and the General Secretariat of Science and Technology of the Universidad Nacional del Sur (UNS), as well as the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Comisión de Investigaciones Científicas de la Prov. de Buenos Aires (CIC), for their support to the development of these investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Ercolani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ercolani, G.D., Felix, D.H. & Ortega, N.F. Crack detection in prestressed concrete structures by measuring their natural frequencies. J Civil Struct Health Monit 8, 661–671 (2018). https://doi.org/10.1007/s13349-018-0295-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-018-0295-2

Keywords

Navigation