Skip to main content
Log in

Classification and Diurnal Variations of Precipitation Echoes Observed by a C-band Vertically-Pointing Radar in Central Tibetan Plateau during TIPEX-III 2014-IOP

  • Regular Article
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

This study investigates classification and diurnal variations of the precipitation echoes over the central Tibetan Plateau based on the observations collected from a C-band vertically-pointing frequency-modulated continuous-wave (C-FMCW) radar during the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III) 2014-Intensive Observation Period (2014-IOP). The results show that 51.32% of the vertical profiles have valid echoes with reflectivity >–10 dBZ, and 35.06% of the valid echo profiles produce precipitation at the ground (precipitation profiles); stratiform precipitation with an evident bright-band signature, weak convective precipitation, and strong convective precipitation account for 52.03%, 42.98%, and 4.99% of the precipitation profiles, respectively. About 59.84% of the precipitation occurs in the afternoon to midnight, while 40.16% of the precipitation with weaker intensity is observed in the nocturnal hours and in the morning. Diurnal variation of occurrence frequency of precipitation shows a major peak during 2100–2200 LST (local solar time) with 59.02% being the stratiform precipitation; the secondary peak appears during 1300–1400 LST with 59.71% being the weak convective precipitation; the strong convective precipitation occurs mostly (81.83%) in the afternoon and evening with two peaks over 1200–1300 and 1700–1800 LST, respectively. Starting from approximately 1100 LST, precipitation echoes develop with enhanced vertical air motion, elevated echo top, and increasing radar reflectivity. Intense upward air motion occurs most frequently in 1700–1800 LST with a secondary peak in 1100–1400 LST, while the tops of precipitation echoes and intense upward air motion reach their highest levels during 1600–1800 LST. The atmospheric conditions in the early morning are disadvantageous for convective initiation and development. Around noon, the convective available potential energy (CAPE) increases markedly, convective inhibition (CIN) is generally small, and a super-dry-adiabatic layer is present near the surface (0–400 m). In the early evening, some larger values of CAPE, level of neutral buoyancy, and total precipitable water are present, suggesting more favorable thermodynamic and water vapor conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin, P. M., and A. Bemis, 1950: A quantitative study of the “bright band” in radar precipitation echoes. J. Meteor., 7, 145–151, doi: 10.1175/1520-0469(1950)007<0145:AQSOTB> 2.0.CO;2.

    Article  Google Scholar 

  • Awaka, J., T. Iguchi, and K. Okamoto, 1998: Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. Proc. 8th URSI Commission F Open Symposium, Aveiro, Portugal, 131–146.

    Google Scholar 

  • Bhatt, B. C., and K. Nakamura, 2005: Characteristics of monsoon rainfall around the Himalayas revealed by TRMM precipitation radar. Mon. Wea. Rev., 133, 149–165, doi: 10.1175/mwr-2846.1.

    Article  Google Scholar 

  • Chang, Y., and X. L. Guo, 2016: Characteristics of convective cloud and precipitation during summertime at Naqu over the Tibetan Plateau. Chinese Sci. Bull., 61, 1706–1720, doi: 10.1360/N972015-01292. (in Chinese)

    Google Scholar 

  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838–851, doi: 10.1175/1520-0469(1995)052 <0838:LTROOT>2.0.CO;2.

    Article  Google Scholar 

  • Flohn, H., 1957: Large-scale aspects of the “summer monsoon” in South and East Asia. J. Meteor. Soc. Japan, 75, 180–186, doi: 10.2151/jmsj1923.35a.0_180.

    Article  Google Scholar 

  • Flohn, H., 1968: Contributions to a meteorology of the Tibetan Highlands. Atmospheric Science Papers No. 130, Colorado State University, Fort Collins, 120 pp.

    Google Scholar 

  • Fu, Y. F., and G. S. Liu, 2007: Possible misidentification of rain type by TRMM PR over Tibetan Plateau. J. Appl. Meteor. Climatol., 46, 667–672, doi: 10.1175/JAM2484.1.

    Article  Google Scholar 

  • Houze Jr., R. A., 1993: Cloud Dynamics. Academic Press, New York, 573 pp.

    Google Scholar 

  • Houze Jr., R. A., S. A. Rutledge, M. I. Biggerstaff, et al., 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608–619, doi: 10.1175/1520-0477(1989)070<0608:iodwrd> 2.0.co;2.

    Article  Google Scholar 

  • Hsu, H. H., and X. Liu, 2003: Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall. Geophys. Res. Lett., 30, 2066, doi: 10.1029/2003GL017909.

    Google Scholar 

  • Koike, T., T. Yasunari, J. Wang, et al., 1999: GAME-Tibet IOP summary report. Proc. 1st International Workshop on GAMETibet, Xi’an, China, 11–13 January, 1–2.

    Google Scholar 

  • Liu, L. P., J. F. Zheng, Z. Ruan, et al., 2015: Comprehensive radar observations of clouds and precipitation over the Tibetan Plateau and preliminary analysis of cloud properties. J. Meteor. Res., 29, 546–561, doi: 10.1007/s13351-015-4208-6.

    Article  Google Scholar 

  • Liu, Y. M., G. X. Wu, J. L. Hong, et al., 2012: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Climate Dyn., 39, 1183–1195, doi: 10.1007/s00382-012-1335-y.

    Article  Google Scholar 

  • Luo, H. B., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966–989, doi: 10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.

    Google Scholar 

  • Luo, Y. L., K. M. Xu, H. Morrison, et al., 2008: Multi-layer Arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity experiments. J. Geophys. Res. Atmos., 113, D12208, doi: 10.1029/2007JD009563.

    Article  Google Scholar 

  • Luo, Y. L., R. H. Zhang, W. M. Qian, et al., 2011: Intercomparison of deep convection over the Tibetan Plateau–Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Climate, 24, 2164–2177, doi: 10.1175/2010JCLI4032.1.

    Article  Google Scholar 

  • Peters, G., B. Fischer, and T. Andersson, 2002: Rain observations with a vertically looking Micro Rain Radar (MRR). Boreal Environ. Res., 7, 353–362.

    Google Scholar 

  • Qian, Z. A., S. M. Zhang, and F. M. Shan, 1984: Analysis on convective activities over the Tibet Plateau in summer of 1979. The Collected Papers on the Qinghai–Xizang Plateau Meteorological Experiment in 1979 (I). Science Press, Beijing, 243–257. (in Chinese)

    Google Scholar 

  • Qie, X. S., X. K. Wu, T. Yuan, et al., 2014: Comprehensive pattern of deep convective systems over the Tibetan Plateau–South Asian monsoon region based on TRMM data. J. Climate, 27, 6612–6626, doi: 10.1175/JCLI-D-14-00076.1.

    Article  Google Scholar 

  • Ruan, Z., L. Jin, R. S. Ge, et al., 2015: The C-band FMCW pointing weather radar system and its observation experiment. Acta Meteor. Sinica, 73, 577–592, doi: 10.11676/qxxb2015.039. (in Chinese)

    Google Scholar 

  • Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278–295, doi: 10.1175/1520-0477 (1988)069<0278:APTRMM>2.0.CO;2.

    Article  Google Scholar 

  • Simpson, J., C. Kummerow, W. K. Tao, et al., 1996: On the tropical rainfall measuring mission (TRMM). Meteor. Atmos. Phys., 60, 19–36, doi: 10.1007/BF01029783.

    Article  Google Scholar 

  • Stephens, G. L., D. G. Vane, R. J. Boain, et al., 2002: The Cloud-Sat mission and the A-Train: A new dimension of spacebased observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 1771–1790, doi: 10.1175/BAMS-83-12-1771.

    Article  Google Scholar 

  • Uyeda, H., H. Yamada, J. Horikomi, et al., 2001: Characteristics of convective clouds observed by a Doppler radar at Naqu on Tibetan Plateau during the GAME-Tibet IOP. J. Meteor. Soc. Japan, 79, 463–474, doi: 10.2151/jmsj.79.463.

    Article  Google Scholar 

  • Williams, C. R., A. B. White, K. S. Gage, et al., 2007: Vertical structure of precipitation and related microphysics observed by NOAA profilers and TRMM during NAME 2004. J. Climate, 20, 1693–1712, doi: 10.1175/JCLI4102.1.

    Article  Google Scholar 

  • Winker, D. M., J. R. Pelon, and M. P. McCormick, 2003: The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Proc. SPIE 4893, Lidar Remote Sensing for Industry and Environment Monitoring III, Hangzhou, China, 21 March, SPIE, 1–12, doi: 10.1117/12.466539.

    Book  Google Scholar 

  • Wu, G. X., Y. M. Liu, B. W. Dong, et al., 2012: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Climate Dyn., 39, 1169–1181, doi: 10.1007/s00382-012-1334-z.

    Article  Google Scholar 

  • Xu, W. X., 2013: Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Wea. Rev., 141, 1577–1592, doi: 10.1175/MWR-D-12-00177.1.

    Article  Google Scholar 

  • Xu, X. D., and L. S. Chen, 2006: Advances in Tibetan Plateau atmospheric science experiments. J. Appl. Meteor. Sci., 17, 756–772, doi: 10.3969/j.issn.1001-7313.2006.06.013. (in Chinese)

    Google Scholar 

  • Xu, X. D., M. Y. Zhou, J. Y. Chen, et al., 2002: A comprehensive physical pattern of land–air dynamic and thermal structure on the Qinghai–Xizang Plateau. Sci. China Ser. D Earth Sci., 45, 577–594, doi: 10.3969/j.issn.1674-7313.2002.07.001.

    Article  Google Scholar 

  • Zhao, P., X. D. Xu, F. Chen, et al., 2018: The third atmospheric scientific experiment for understanding the earth–atmosphere coupled system over the Tibetan Plateau and its effects. Bull. Amer. Meteor. Soc., 99, 757–776, doi: 10.1175/BAMS-D-16-0050.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Luo.

Additional information

Supported by the National Natural Science Foundation of China (91437104 and 41605107) and Basic Research Funds of the Chinese Academy of Meteorological Sciences (2017Z006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Luo, Y. & Wang, H. Classification and Diurnal Variations of Precipitation Echoes Observed by a C-band Vertically-Pointing Radar in Central Tibetan Plateau during TIPEX-III 2014-IOP. J Meteorol Res 32, 985–1001 (2018). https://doi.org/10.1007/s13351-018-8084-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-8084-8

Key words

Navigation