Skip to main content
Log in

Electrorheological fluids of polypyrrole-tin oxide nanocomposite particles

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

The electrorheological (ER) response of polypyrrole(PPy)-tin oxide nanocomposite ER fluids increased with the increase in the tin oxide/pyrrole weight ratio, particle volume fraction, and electric field strength. The dielectric properties and direct current (dc) conductivity of PPy-tin oxide nanocomposite particles and the dielectric properties of PPy-tin oxide nanocomposite ER fluids agreed with the ER behaviors. The ER behavior of PPy-tin oxide nanocomposite ER fluids was well fitted to τ = 0.0248ϕE 1.5 and showed a transition from that of the polarization model (τE 2) to that of the conduction model (τE 1.5) depending on the tin oxide/pyrrole weight ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Block, H. and J.P. Kelly, 1988, Electro-rheology, J. Phys. D: Appl. Phys. 21, 1661–1677.

    Article  Google Scholar 

  • Chae, H.S., W.L. Zhang, S.H. Piao, and H.J. Choi, 2015, Synthesized palygorskite/polyaniline nanocomposite particles by oxidative polymerization and their electrorheology, Appl. Clay Sci. 107, 165–172.

    Article  Google Scholar 

  • Filisko, F.E. and L.H. Razdilowski, 1990, An intrinsic mechanism for the activity of alumino-silicate based electrorheological materials, J. Rheol. 34, 539–552.

    Article  Google Scholar 

  • Flitton, R., J. Johal, S. Maeda, and S.P. Armes, 1995, Synthesis of colloidal dispersions of polypyrrole-silica nanocomposites using stringy silica particles, J. Colloid Interface Sci. 173, 135–142.

    Article  Google Scholar 

  • Gast, A.P. and C.F. Zukoski, 1989, Electroehological fluids as colloidal suspensions, Adv. Colloid Interface Sci. 30, 153–202.

    Article  Google Scholar 

  • Kim, M.W., I.J. Moon, H.J. Choi, and Y. Seo, 2016, Facile fabrication of core/shell structured SiO2/polypyrrole nanoparticles with surface modification and their electrorheology, RSC Adv. 6, 56495–56502.

    Article  Google Scholar 

  • Kim, Y.D. and D.J. Klingenberg, 1996, Two roles of nonionic surfactants on the electrorheological response, J. Colloid Interface Sci. 183, 568–578.

    Article  Google Scholar 

  • Kim, Y.D. and J.H. Kim, 2008, Synthesis of polypyrrole–polycaprolactone composites by emulsion polymerization and the electrorheological behavior of their suspensions, Colloid Polym. Sci. 286, 631–637.

    Article  Google Scholar 

  • Klingenberg, D.J., D. Dierking, and C.F. Zukoski, 1991, Stress transfer mechanism in electrorheological suspensions, J. Chem. Soc. Faraday Trans. 87, 425–430.

    Article  Google Scholar 

  • Marshall, L., J.W. Goodwin, and C.F. Zukoski, 1989, Effect of electric fields on the rheology of nonaqueous concentrated suspensions, J. Chem. Soc. Faraday Trans. 85, 2785–2795.

    Article  Google Scholar 

  • Noh, J., C.-M. Yoon, and J. Jang, 2016, Enhanced electrorheological activity of polyaniline coated mesoporous silica with high aspect ratio, J. Colloid Interface Sci. 470, 237–244.

    Article  Google Scholar 

  • Parthasarathy, M. and D.J. Klingenberg, 1996, Electrorheology: Mechanisms and models, Mater. Sci. Eng. R17, 57–103.

    Article  Google Scholar 

  • Shin, K., D. Kim, J.-C. Cho, H.-S. Lim, J.W. Kim, and K-D. Suh, 2012, Monodisperse conducting colloidal dipoles with symmetric dimer structure for enhancing electrorheology properties, J. Colloid Interface Sci. 374, 18–24.

    Article  Google Scholar 

  • Shulman, Z.P., R.G. Gorodkin, E.V. Korobko, and V.K. Gleb, 1981, The Electrorheological effects and its possible uses, J. Non-Newton. Fluid Mech. 8, 29–41.

    Article  Google Scholar 

  • Su, S.J. and N. Kuramuto, 2000, Processable polyaniline–titanium dioxide nanocomposites: Effect of titanium dioxide on the conductivity, Synth. Met. 114, 147–153.

    Article  Google Scholar 

  • Weiss, K.D. and J.D. Carlson, 1993, Material aspects of electrorheological systems, J. Intell. Mater. Syst. Struct. 4, 13–34.

    Article  Google Scholar 

  • Winslow, W.M., 1949, Induced fibration of suspensions, J. Appl. Phys. 20, 1137–1140.

    Article  Google Scholar 

  • Wu, C.W. and H. Conrad, 1997, Dielectric and conduction effects in ohmic electrorheological fluids, J. Phys. D: Appl. Phys. 30, 2634–2632.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Dae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.D., Yoon, D.J. Electrorheological fluids of polypyrrole-tin oxide nanocomposite particles. Korea-Aust. Rheol. J. 28, 275–279 (2016). https://doi.org/10.1007/s13367-016-0029-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-016-0029-0

Keywords

Navigation