Skip to main content
Log in

MHD micropumping of viscoelastic fluids: an analytical solution

  • Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

An analytical solution is found for examining the effect of a fluid’s elasticity on the performance of MHD micropumps. The test fluid is assumed to be an incompressible viscoelastic fluid obeying the Oldroyd-B model. The flow generated by the Lorentz force is assumed to be laminar, unidirectional, and two-dimensional. The effects of relaxation and retardation times are investigated on the volumetric flow rate. It is concluded that by a decrease in the relaxation time, the pulsatile nature of micropump can be eliminated in its transient phase. At sufficiently low relaxation times, the flow is predicted to monotonically reach its steady value at a much shorter time. By an increase in the retardation time, the pulsatile nature of micropump in its transient phase can also be eliminated and the flow will be more continuous in its steady conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\overrightarrow B \) :

Magnetic field vector, T

B :

Magnitude of magnetic field, T

d :

Rate-of-deformation tensor, s−1

\(\overrightarrow E \) :

Electric field vector, V/m

E :

Magnitude of electric field, V/m

\(\overrightarrow F \) :

Body force vector, N

h :

Height of channel, m

Ha :

Hartman number, = \(LB\sqrt {\sigma /\mu } \)

J :

Current density, A/m2

L :

Channel length, m

L p :

Electrode length, m

\(L_p^*\) :

Dimensionless electrode length, = Lp/L

p :

Pressure, Pa

Q :

Volumetric flow rate, m3/s

Re:

Reynolds number, = ρu0L/μ

t :

Time, s

\(\overrightarrow u \) :

Velocity component vector, ms−1

u :

Magnitude of velocity component, ms−1

u 0 :

Characteristic velocity, ms−1

u* :

Dimensionless velocity, = u/u0

V :

Voltage differences, V

V* :

Dimensionless voltage differences, = \(V/{u_0}\sqrt {\sigma /\mu } \)

w :

Width of channel, m

We :

Weissenberg number, = λ1u0/L

x, y, z :

Coordinates, m

y*, z* :

Dimensionless Coordinates, = y/L, z/L

α :

Dimensionless height, = h/L

β :

Dimensionless width, = w/L

σ :

Electrical conductivity, S/m

μ :

Zero shear viscosity, N.s/m2

ρ :

Density, kgm−3

τ ij :

Shear stress, N/m2

τ :

Dimensionless time, = u0t/L

λ 1 :

Relaxation time, s

λ 2 :

Retardation time, s

λ *2 :

Dimensionless retardation time, = λ2u0/L

ω :

Frequency, Hz

ϕ :

Phase angle

Ψ(y, z):

Eigenfunctions

Ψ(y, z):

Eigenvalues

References

  • Affanni, A. and G. Chiorboli, 2006, Numerical modelling and experimental study of an AC magnetohydrodynamic micro-pump, Instrumentation and Measurement Technology Conference, Sorrento, Italy.

  • Aguilar, Z.P., P. Arumugam, and I. Fritsch, 2006, Study of magnetohydrodynamic driven flow through LTCC channel with self-contained electrodes, J. Electroanal. Chem. 591, 201–209.

    Article  CAS  Google Scholar 

  • Arumugam, P.U., E.S. Fakunle, E.C. Anderson, S.R. Evans, K.G. King, Z.P. Aguilar, C.S. Carter, and I. Fritsch, 2006, Redox magnetohydrodynamics in a microfluidic channel: characterization and pumping, J. Electrochem. Soc. 153, E185–E194.

    Article  CAS  Google Scholar 

  • Bau, H.H., J. Zhu, S. Qian, and Y. Xiang, 2003, A magnetohydrodynamically controlled fluidic network, Sens. Actuators B 88, 205–216.

    Article  CAS  Google Scholar 

  • Bird, R.B., R.C. Armstrong, and O. Hassager, 1987, Dynamics of polymeric, by John Wiley & Sons Inc.

  • Carnahan, B., H.A. Luther, and J.O. Wilkes, 1969, Applied Numerical Methods, John Wiley & Sons, New York.

    Google Scholar 

  • Derakhshan, S. and K. Yazdani, 2016, 3D Analysis of magnetohydrodynamic (MHD) micropump performance using numerical method, J. Mech. 32, 55–62.

    Article  Google Scholar 

  • Duwairi, H.M. and M. Abdullah, 2007, Thermal and flow analysis of a magneto-hydrodynamic micro-pump, Microsyst. Technol. 13, 33–39.

    Article  CAS  Google Scholar 

  • Eijkel, J., C. Dalton, C. Hayden, J. Burt, and A. Manz, 2003, A Circular AC Magneto-hydrodynamic micro-pump for chromatographic applications, Sens. Actuator 92, 215–221.

    Article  CAS  Google Scholar 

  • Elmaboud, Y.A. and S.I. Abdelsalam, 2019, DC/AC magnetohydrodynamic-micropump of a generalized Burger’s fluid in an annulus, Phys. Scr. 94, 115209.

    Article  Google Scholar 

  • Gao, C. and Y. Jian, 2015, Analytical solution of magnetohydrodynamic flow of Jeffrey fluid through a circular microchannel, J. Mol. Liq. 211, 803–811.

    Article  CAS  Google Scholar 

  • Ho, J.E., 2007, Characteristic study of MHD pump with channel in rectangular ducts, J. Mar. Sci. Technol., 15, 315–321.

    Google Scholar 

  • Homsy, A., S. Koster, J. C. T. Eijkel, A. Ven der Berg, F. Lucklum, E. Verpoorte, and N.F. de Rooij, 2007, A high current density DC magneto-hydrodynamic (MHD) micro-pump, Lab Chip 5, 466–477.

    Article  Google Scholar 

  • Huang, L., W. Wang, and M.C. Murphy, 1999, Lumped-parameter model for a micropump based on the magnetohydrodynamic (MHD) principle, Proc. SPIE 3680, Design, Test, and Microfabrication of MEMS and MOEMS, 379–387.

  • Huang, L., W. Wang, M.C. Murphy, K. Lian, and Z.G. Ling, 2000, LIGA fabrication and test of a dc type magneto-hydrodynamic (MHD) micro-pump, Microsyst. Technol. 6, 235–240.

    Article  Google Scholar 

  • Ito, K., T. Takahashi, T. Fujino, and M. Ishikawa, 2014, Influences of channel size and operating conditions on fluid behavior in a MHD micropump for micro total analysis system, Journal of International Council on Electrical Engineering, 4, 220–226.

    Article  Google Scholar 

  • James, D.F. and Boger Fluids, 2009, Annu. Rev. Fluid Mech. 41, 129–142.

    Article  Google Scholar 

  • Jang, J. and S.S. Lee, 2000, Theoretical and experimental study of MHD micropump, Sens. Actuator 80, 84–89.

    Article  CAS  Google Scholar 

  • Kim, C.T., J. Lee, and S. Kwon, 2014, Design, fabrication, and testing of a DC MHD micropump fabricated on photosensitive glass, Chem. Eng. Sci. 117, 210–216.

    Article  Google Scholar 

  • Laser, D.J. and J.G. Santiago, 2004, A review of micropumps, J. Micromech. Microeng. 14, R35–R64.

    Article  Google Scholar 

  • Lemoff, A.V. and A.P. Lee, 2000, An AC magnetohydrodynamic micropump, Sens. Actuator B-Chem. 63, 178–185.

    Article  CAS  Google Scholar 

  • Lim, S. and B. Choi, 2009, A study on the MHD (magnetohydrodynamic) micropump with side-walled electrodes, J. Mech. Sci. Technol. 23, 739–749.

    Article  Google Scholar 

  • Moghaddam, S., 2012, Analytical solution of MHD micropump with circular channel, Int. J. Appl. Electromagn. Mech. 40, 309–322.

    Article  Google Scholar 

  • Moghaddam, S., 2013, MHD micropumping of power-law fluids: A numerical solution, Korea-Aust. Rheol. J. 25, 29–37.

    Article  Google Scholar 

  • Moghaddam, S., 2019, Investigating Flow in MHD Micropumps, SN Appl. Sci. 1, 1609.

    Article  Google Scholar 

  • Nguyen, N., X. Huang, and T.K. Chuan, 2002, MEMS-Micropumps: A Review, ASME. J. Fluids Eng. 124, 384–392.

    Article  Google Scholar 

  • Ramos, A., 2007, Electrohydrodynamic and Magnetohydrodynamic Micropumps, In: Hardt S. and F. Schonfeld, Microfluidic Technologies for Miniaturized Analysis Systems, Chapter 2, Springer.

  • Renardy, M. and R.C. Rogers, 2004, An introduction to partial differential equations. Texts in Applied Mathematics 13, 2nd ed., New York, Springer-Verlag.

    Google Scholar 

  • Shahidian, A., M. Ghassemi, S. Khorasanizade, M. Abdollahzade, and G. Ahmadi, 2009, Flow Analysis of Non-Newtonian Blood in a Magnetohydrodynamic Pump, IEEE Trans. Magn. 45, 2667–2670.

    Article  CAS  Google Scholar 

  • Si, D. and Y. Jian, 2015, Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with corrugated walls, J. Phys. D-Appl. Phys. 48, 085501.

    Article  Google Scholar 

  • Wang, P. J., C.-Y. Chang, and M.-L. Chang, 2004, Simulation of two-dimensional fully developed laminar flow for a magnetohydrodynamic (MHD) pump, Biosens. Bioelectron. 20, 115–121.

    Article  CAS  Google Scholar 

  • Yurish, S., 2018, Chemical Sensors and Biosensors, In: Advances in Sensors: Reviews, 6, IFSA Publishing.

  • Zhao, G., Y. Jian, L. Chang, and M. Buren, 2015, Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field, J. Magn. Magn. Mater. 387, 111–117.

    Article  CAS  Google Scholar 

  • Zhong, J., M. Yi, and H. Bau, 2002, Magneto-Hydrodynamic (MHD) Pump Fabricated With Ceramic Tapes, Sens. Actuator 96, 59–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saied Moghaddam.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghaddam, S. MHD micropumping of viscoelastic fluids: an analytical solution. Korea-Aust. Rheol. J. 33, 93–104 (2021). https://doi.org/10.1007/s13367-021-0008-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-021-0008-y

Keywords

Navigation