Skip to main content

Advertisement

Log in

Recent developments of regenerative magnetorheological (RMR) damper: A review

  • Review
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Magnetorheological (MR) dampers are becoming popular smart devices with controllable higher damping properties. This paper presents an inclusive review of energy harvesting MR dampers. The classifications of energy harvesting MR dampers, operating principles, structural design, mathematical models, fluid models, experimental investigation, and applications are classified and reviewed. The regenerative MR dampers have self-power capability, and self-sensing capability to control higher performance and it is an important feature of regenerative MR dampers. The review indicates that regenerative MR dampers have enough power generation capacity to power MR dampers and higher damping performances. It has been found that a single-ended monotube regenerative MR (RMR) damper has maximum power generation capabilities than other RMR dampers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A p :

Piston area

A h :

The Cross-sectional area of Piston head

A r :

The cross-sectional area of the rod

A m :

Magnet cross section area

\(\vec B\) :

Magnetic field

B m :

Permanent magnet density

B rem :

Remanent flux density

c 1 :

Viscous damping coefficient

c v :

Viscous damping coefficient

c post :

Post-yield region damping coefficient

c pre :

Pre-yield region damping Coefficient

d c :

Gap of the coil winding

d :

Gap of the active pole

d s :

Gap of the stator

D :

Diameter of piston head

F(t):

Total damping force

F s :

Direct shear damping force

F v :

Valve damping force

F sv :

Output damping force

f c :

Magnitude of hysteresis

f es :

Forces in the elasto slide element

f 0 :

The offset of damper force

f d :

Forces in the viscous dashpot

f s :

Forces in the stiffness

f y :

Yield force (model parameter)

H c :

Coercive magnetic field intensity

h :

Thickness of fluid gap

I :

Applied current

K :

Consistency index

l :

Length of effective magnetic field

L,L c,L s :

Length of active pole, Coil winding and stator

m :

Power law index

N m :

Coil turn number

N d :

Coil turn per pole

n:

Coil number group

P g :

Gas pressure in the pneumatic reservoir

ΔP a :

Pressure drop

P rms :

Harvested power

r m :

Permanent magnet radius

r 1 :

Radius of the first transmission gear

r, r c,r s :

Radii of active pole, coil winding and stator

R mrf :

Reluctance of MR fluid

R MRC :

Resistance of MR damper coil

R i :

Internal resistance of the generator

v p :

Piston velocity

x :

Displacement

x s :

Velocity of piston rod

x e :

Hydraulic cylinder displacement

x a :

Velocity of permanent magnet

α,β,γ,δ,n :

Model parameters

α 1 :

Gear ratio

μ 0 :

Air gap cross section area

γ :

Strain rate

κ :

Stiffness coefficient

η :

Fluid viscosity

z:

Hysteretic variable

Z coil :

Impedance of coil

\(\left| {\dot Z} \right|\) :

Velocity

τ y :

Yield stress

ε :

Electromotive force

τ :

Pole pitch

φ B :

Magnetic flux

φ g :

Air gap magnetic flux

μ 1 :

Relative permeability of MR fluid

References

  • Abdelkareem, M.A., L. Xu, M.K.A. Ali, A. Elagouz, J. Mi, S. Guo, Y. Liu, and L. Zuo, 2018, Vibration energy harvesting in automotive suspension system: A detailed review, Appl. Energy 229, 672–699.

    Article  Google Scholar 

  • Abu-Ein, S.Q., S.M. Fayyad, W. Momani, A. Al-Alawin, and M. Momani, 2010, Experimental investigation of using MR fluids in automobiles suspension systems, Res. J. Appl. Sci., Eng. Technol. 2, 159–163.

    Google Scholar 

  • Ahamed, R., M.M. Rashid, M.M. Ferdaus, and H.B. Yusuf, 2017, Modelling and performance evaluation of energy harvesting linear magnetorheological (MR) damper, J. Low. Freq. Noise. V.A 36, 177–192.

    Article  Google Scholar 

  • Ahamed, R., M.M. Rashid, M.M. Ferdaus, and H.M. Yusof, 2016, Design and modeling of energy generated magneto rheological damper, Korea-Aust. Rheol. J. 28, 67–74.

    Article  Google Scholar 

  • Ahmadian, M. and J.A Norris, 2004, Rheological controllability of double-ended MR dampers subjected to impact loading, Proc. SPIE 5386, 185–194.

    Article  Google Scholar 

  • Ashfak, A., A. Saheed, K.K.A. Rasheed, and J.A. Jaleel, 2011, Design, fabrication and evaluation of MR damper, Development 3191, 9458.

    Google Scholar 

  • Ashfak, A., A. Saheed, K.K.A. Rasheed, and J.A. Jaleel, 2011, Design, fabrication and evaluation of MR damper, Int. J. Aerosp. Mech. Eng. 1, 27–33.

    Google Scholar 

  • Ashtiani, M., S.H. Hashemabadi, and A. Ghaffari, 2015, A review on the magnetorheological fluid preparation and stabilization, J. Magn. Magn. Mater. 374, 716–730.

    Article  CAS  Google Scholar 

  • Avinash, B., S.S. Sundar and K.V. Gangadharan, 2014, Experimental study of damping characteristics of air, silicon oil, magneto rheological fluid on twin tube damper, Procedia Mater Sci. 5, 2258–2262.

    Article  CAS  Google Scholar 

  • Aziz, M.A., A.H Embong, M.M. Rashid, and M.S. Saadeddin, 2019, Design and material analysis of regenerative dispersion magnetorheological (MR) damper, J.Recent. Technol. 7, 304–307.

    Google Scholar 

  • Bai, X.X., S. Shen, F.L. Cai, X.C. Deng, and S.X. Xu, 2018, Mechanical responses of a magnetorheological damper, Proc. SPIE 10595, 1059507.

    Google Scholar 

  • Bai, X.X. and D.H. Wang, 2014, Shock and vibration control systems using a self-sensing magnetorheological damper, Proc. SPIE 9057, 905734.

    Article  Google Scholar 

  • Bai, X.X., D.H. Wang, and H. Fu, 2013, Principle, modeling, and testing of an annular-radial-duct magnetorheological damper, Sens. Actuators, A 201, 302–309.

    Article  CAS  Google Scholar 

  • Bai, X.X., N.M. Wereley, and W. Hu, 2015, Maximizing semi-active vibration isolation utilizing a magnetorheological damper with an inner bypass configuration, J. Appl. Phys. 117, 17C711.

    Article  CAS  Google Scholar 

  • Bai, X.X., W.M. Zhong, Q. Zou, A.D. Zhu, and J. Sun, 2018, Principle, design and validation of a power-generated magnetorheological energy absorber with velocity self-sensing capability, Smart Mater. Struct. 27, 075041.

    Article  Google Scholar 

  • Bai, X.X., Q. Zou, and L.J. Qian, 2017, Design and test of a power-generated magnetorheological damper, Proc. SPIE 10164, 101641J.

    Article  Google Scholar 

  • Bastola, A.K., V.T. Hoang, and L. Li, 2017, A novel hybrid magnetorheological elastomer developed by 3D printing, Mater. Des. 114, 391–397.

    Article  CAS  Google Scholar 

  • Bastola, A.K., L. Li, and M. Paudel, 2018, A hybrid magnetorheological elastomer developed by encapsulation of magnetorheological fluid, J. Mater. Sci 53, 7004–7016.

    Article  CAS  Google Scholar 

  • Bui, Q.D., Q.H. Nguyen, N.T. Tien, and D.D. Mai, 2020, Development of a Magnetorheological Damper with Self-Powered Ability for Washing Machines, Appl. Sci. 10, 4099.

    Article  CAS  Google Scholar 

  • Carlson, J.D., D.M. Catanzarite, and K.A. St. Clair, 1996, Commercial magneto-rheological fluid devices, Int. J. Mod Phys B 10, 2857–2865.

    Article  CAS  Google Scholar 

  • Carlson, J.D. and M.R. Jolly, 2000, MR fluid, foam and elastomer devices, Mechatronics 10, 555–569.

    Article  Google Scholar 

  • Chae, Y., J.M. Ricles, and R. Sause, 2014, Large-scale real-time hybrid simulation of a three-story steel frame building with magneto-rheological dampers, Earthq. Eng. Struct. Dyn. 43, 1915–1933.

    Article  Google Scholar 

  • Chan, Y., C. Chen, and W.H. Lioa, 2013, A regenerative damper with MR fluids working between gear transmissions, Proc. SPIE 8692, 86922R.

    Article  Google Scholar 

  • Chen, C., Y.S. Chan, L. Zou, and W.-H. Liao, 2018, Self-powered magnetorheological dampers for motorcycle suspensions, Proc. Inst. Mech. Eng., Part D-J. Aut. Eng. 232, 921–935.

    Article  Google Scholar 

  • Chen, C. and W.H. Liao, 2010, A self-powered, self-sensing magnetorheological damper, Proceeding of 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, China, 1364–1369.

  • Chen, C. and W.H. Liao, 2011, Design and analysis of a self-powered, self-sensing magnetorheological damper, Proc. SPIE 7977, 797716.

    Article  Google Scholar 

  • Chen, C. and W.H. Liao, 2012, Feasibility study of self-powered magnetorheological damper systems, Proc. SPIE 8341, 83410Q.

    Article  Google Scholar 

  • Chen, C. and W.H. Liao, 2012, A self-sensing magnetorheological damper with power generation, Smart Mater. Struct. 21, 025014.

    Article  Google Scholar 

  • Chen, C., L. Zou, and W.H. Liao, 2015, Regenerative magnetorheological dampers for vehicle suspensions, Proc. SPIE 9435, 94353K.

    Article  Google Scholar 

  • Chen, Z., K.H. Lam, and Y.Q. Ni, 2016, Enhanced damping for bridge cables using a self-sensing MR damper, Smart Mater. Struct. 25, 085019.

    Article  Google Scholar 

  • Cho, S.W., H.J. Jung, and I.W. Lee, 2005, Smart passive system based on magnetorheological damper, Smart Mater. Struct. 14, 707.

    Article  Google Scholar 

  • Cho, S.W., J.H Koo, J.S. Jo, and I.W. Lee, 2007, Vibration control of a cable-stayed bridge using electromagnetic induction based sensor integrated MR dampers, J. Mech. Sci. Technol. 21, 875–880.

    Article  Google Scholar 

  • Cho, S.W., J.S. Jo, J.E. Jang, J.H. Koo, and H.J. Jung, 2006, A smart passive damping system for stay cables, Proc. SPIE 6174, 61740Q.

    Article  Google Scholar 

  • Choi, K.M., H.J. Jung, S.W. Cho, and I.W. Lee, 2007, Application of smart passive damping system using MR damper to highway bridge structure, J. Mech. Sci. Technol. 21, 870–874.

    Article  Google Scholar 

  • Choi, K.M., H.J. Jung, H.J. Lee, and S. W. Cho, 2007, Feasibility study of an MR damper-based smart passive control system employing an electromagnetic induction device, Smart Mater. Struct. 16, 2323.

    Article  Google Scholar 

  • Choi, K., H. Jung, S. Cho, and I.W. Lee, 2006, Application of smart passive damping system using MR damper to highway bridge benchmark problem, Proceedings of 8th international conference on motion and vibration control (MOVIC 2006).

  • Choi, K., I.W. Lee, H.J Jung, and S.W. Cho, 2006, Smart assive system based on magnetorheological damper for benchmark structural control problem for a seismically excited highway bridge, 4th World Conference on Structural Control and Monitoring(4WCSCM), San Diego, California, USA.

  • Choi, K.M., H.J. Jung, H.J. Lee, and S.W. Cho, 2008, Seismic protection of base-isolated building with nonlinear isolation system using smart passive control strategy, Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures 15, 785–796.

    Article  Google Scholar 

  • Choi, Y.T., H.J. Song, and N.M. Wereley, 2009, Semi-active isolation system using self-powered magnetorheological dampers, Smart Materials, Adaptive Structures and Intelligent Systems, ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Oxnard, California, USA, 295–304.

  • Choi, Y.T. and N.M. Wereley, 2009, Self-powered magnetorheological dampers, J. Vib. Acoust. 131.

  • Choi, Y.T. and N.M. Wereley, 2014, Flow mode magnetorheological dampers with an eccentric gap, Adv. Mech. Eng. 6, 931683.

    Article  Google Scholar 

  • Choi, Y.T., J.U. Cho, S.B. Choi, and N.M. Wereley, 2005, Constitutive models of electrorheological and magnetorheological fluids using viscometers, Smart Mater. Struct. 14, 1025.

    Article  Google Scholar 

  • Chu, K.S., L. Zou, and W.H. Liao, 2016, A mechanical energy harvested magnetorheological damper with linear-rotary motion converter, Proc. SPIE 9803, 980309.

    Article  Google Scholar 

  • Do, X.P., L.M.B. Quoc, B.H. Kang, and S.B. Choi, 2019, Design of a new magneto-rheological pressure seal for rotary shaft, Proc. SPIE 10970, 109702M.

    Google Scholar 

  • Dong, X., 2015, Design and characterization of axial flux permanent magnet energy harvester for vehicle magnetorheological damper, Smart Mater. Struct. 25, 015024.

    Article  CAS  Google Scholar 

  • Du, X., M. Yu, J. Fu, and C. Huang, 2020, Experimental study on shock control of a vehicle semi-active suspension with magneto-rheological damper, Smart Mater. Struct. 29, 074002.

    Article  Google Scholar 

  • Ebrahimi, B., M.B. Khamesee, and F. Golnaraghi, 2009, Design of a hybrid electromagnetic/hydraulic damper for automotive suspension systems, 2009 International Conference on Mechatronics and Automation, Changchun, China, 3196–3200.

  • Ebrahimi, B., M.B. Khamesee, and M.F. Golnaraghi, 2008, Feasibility study of an electromagnetic shock absorber with position sensing capability, 2008 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 2988–2991.

  • Farjoud, A., R. Cavey, M. Ahmadian, and M. Craft, 2009, Magneto-rheological fluid behavior in squeeze mode, Smart Mater. Struct. 18, 095001.

    Article  CAS  Google Scholar 

  • Ferdaus, M.M., M.M. Rashid, M.M.I. Bhuiyan, and A.G.B.A. Muthalif, 2014, Design and Performance Evaluation of a Self-Controlled Magneto-Rheological Damper, J. Robot. Mechatron. 1, 74–80.

    Article  Google Scholar 

  • Ferdaus, M.M., M.M. Rashid, M.M.I. Bhuiyan, A.G.B.A. Muthalif, and M.R. Hasan, 2013, Novel design of a self powered and self sensing magneto-rheological damper, IOP Conf. Ser.-Mater. Sci. Eng. 53, 012048.

    Article  Google Scholar 

  • Ganesha, A., S. Patil, N. Kumar, and A. Murthy, 2020, Magnetic field enhancement technique in the fluid flow gap of a single coil twin tube Magnetorheological damper using magnetic shields, J. Mech. Eng. Sci. 14, 6679–6689.

    Article  CAS  Google Scholar 

  • Gao, F., Y.N. Liu, and W.-H. Liao, 2017, Optimal design of a magnetorheological damper used in smart prosthetic knees, Smart Mater. Struct. 26, 035034.

    Article  Google Scholar 

  • Gao, X., J. Niu, R. Jia, and Z. Liu, 2020, Influential characteristics of electromagnetic parameters on self-powered MR damper and its application in vehicle suspension system, Proc. Inst. Mech Eng., Part K. 234, 38–49.

    Google Scholar 

  • Gołdasz, J., 2015, Theoretical study of a twin-tube magnetorheological damper concept, J. Mec. Theor. Appl. 53, 885–894.

    Article  Google Scholar 

  • Goncalves, F.D., J.H. Koo, and M. Ahmadian, 2006, A review of the state of the art in magnetorheological fluid technologies-Part I: MR fluid and MR fluid models, Shock Vib. Digest 38, 203–220.

    Article  Google Scholar 

  • Gong, X., X. Ruan, S. Xuan, Q. Yan, and H. Deng, 2014, Magnetorheological damper working in squeeze mode, Adv. Mech. Eng. 6, 410158.

    Article  Google Scholar 

  • Gordaninejad, F., X. Wang, G. Hitchcock, K. Bangrakulur, S. Ruan, and M. Siino, 2010, Modular high-force seismic magneto-rheological fluid damper, J. Struct. Eng. 136, 135–143.

    Article  Google Scholar 

  • Graves, K., D. Toncich, and P.G. lovenitti, 2000, Theoretical comparison of motional and transformer EMF device damping efficiency, J. Sound Vib. 233, 441–453.

    Article  Google Scholar 

  • Graves, K.E., P.G. Iovenitti, and D. Toncich, 2000, Electromagnetic regenerative damping in vehicle suspension systems, Int. J. Veh. Des. 24, 182–197.

    Article  Google Scholar 

  • Gu, Z.Q. and S.O. Oyadiji, 2008, Application of MR damper in structural control using ANFIS method, Comput. Struct. 86, 427–436.

    Article  Google Scholar 

  • Guan, X., Y. Ru, and Y. Huang, 2019, A novel velocity self-sensing magnetorheological damper: Design, fabricate, and experimental analysis, J. Intell. Mater. Syst. Struct. 30, 497–505.

    Article  Google Scholar 

  • Guo, C., X. Gong, L. Zong, C. Peng, and S. Xuan, 2015, Twintube-and bypass-containing magneto-rheological damper for use in railway vehicles, Proc. Inst. Mech Eng., Part F-J Rail Rapid Transit 229, 48–57.

    Article  Google Scholar 

  • Gupta, A., J.A. Jendrzejczyk, T.M. Mulcahy, and J.R. Hull, 2006, Design of electromagnetic shock absorbers, Int. J. Mech. Mater. Des. 3, 285–291.

    Article  CAS  Google Scholar 

  • Han, C., B.G. Kim, and S.B. Choi, 2018, Design of a new magnetorheological damper based on passive oleo-pneumatic landing gear, J. Aircr. 55, 2510–2520.

    Article  Google Scholar 

  • Hong, H., S. Tang, Y. Sheng, and Q. Cui, 2015, Magnetic circuit design and computation of a magnetorheological damper with exterior coil, 2015 IEEE international conference on mechatronics and automation (ICMA), Beijing, China, 60–64.

  • Hong, J.H., K.M. Choi, J.H. Lee, J.W. Oh, and I.W. Lee, 2007, Experimental study on smart passive system based on MR damper, Proceedings of the 18th KKCNN Symposium on Civil Engineering, Taiwan.

  • Hong, S.R., N.M. Wereley, Y.T. Choi, and S.B. Choi, 2008, Analytical and experimental validation of a nondimensional Bingham model for mixed-mode magnetorheological dampers, J. Sound Vib. 312, 399–417.

    Article  Google Scholar 

  • Hu, G., F. Liu, Z. Xie, and M. Xu, 2016, Design, analysis, and experimental evaluation of a double coil magnetorheological fluid damper, Shock Vib. 2016.

  • Hu, G., H. Liu, J. Duan, and L. Yu, 2019, Damping performance analysis of magnetorheological damper with serial-type flow channels, Adv. Mech. Eng. 11, 1687814018816842.

    Article  Google Scholar 

  • Hu, G., Y. Lu, S. Sun, and W. Li, 2016, Performance analysis of a magnetorheological damper with energy harvesting ability, Shock Vib. 2016.

  • Hu, G., Y. Lu, S. Sun, and W. Li, 2017, Development of a self-sensing magnetorheological damper with magnets in-line coil mechanism, Sens. Actuators, A 255, 71–78.

    Article  CAS  Google Scholar 

  • Hu, G., Y. Ru, and W. Li, 2015, Design and development of a novel displacement differential self-induced magnetorheological damper, J. Intell. Mater. Syst. Struct. 26, 527–540.

    Article  Google Scholar 

  • Hu, G., F. Yi, H. Liu, and L. Zeng, 2020, Performance Analysis of a Novel Magnetorheological Damper with Displacement Self-Sensing and Energy Harvesting Capability, J. Vib. Eng. Technol. 1–19.

  • Hu, G., J. Zhang, F. Zhong, and L. Yu, 2019, Performance evaluation of an improved radial magnetorheological valve and its application in the valve controlled cylinder system, Smart Mater. Struct. 28, 047003.

    Article  CAS  Google Scholar 

  • Hu, G., W. Zhou, and W. Li, 2015, A new magnetorheological damper with improved displacement differential self-induced ability, Smart Mater. Struct. 24, 087001.

    Article  Google Scholar 

  • Hu, G., W. Zhou, M. Liao, and W. Li, 2015, Static and dynamic experiment evaluations of a displacement differential self-induced magnetorheological damper, ShockVib. 2015.

  • Huang, J., E. Wang, and H. Zhang, 2020, Analysis and Research on the Comprehensive Performance of Vehicle Magnetorheological Regenerative Suspension, Vehicles 2, 576–588.

    Article  Google Scholar 

  • Huang, J., J.Q. Zhang, Y. Yang, and Y.Q. Wei, 2002, Analysis and design of a cylindrical magneto-rheological fluid brake, J. Mater. Process. Technol. 129, 559–562.

    Article  Google Scholar 

  • Hwang, Y.H., S.R. Kang, S.W. Cha, and S.B. Choi, 2019, A robot-assisted cutting surgery of human-like tissues using a haptic master operated by magnetorheological clutches and brakes, Smart Mater. Struct. 28, 065016.

    Article  Google Scholar 

  • Ichwan, B., S.A. Mazlan, F. Imaduddin, T. Koga, and M.H. Idris, 2016, Development of a modular MR valve using meandering flow path structure, Smart Mater. Struct. 25, 037001.

    Article  CAS  Google Scholar 

  • Imaduddin, F., S.A. Mazlan, M.H. Idris, and I. Bahiuddin, 2017, Characterization and modeling of a new magnetorheological damper with meandering type valve using neuro-fuzzy, J. King Saud Univ. Sci. 29, 468–477.

    Article  Google Scholar 

  • Imaduddin, F., S.A. Mazlan, H. Zamzuri, and I.I.M. Yazid, 2015, Design and performance analysis of a compact magnetorheological valve with multiple annular and radial gaps, J. Intell. Mater. Syst. Struct. 26, 1038–1049.

    Article  CAS  Google Scholar 

  • Jacquot, J., 2017, Damper and Awe: 6 Types of Automotive Dampers Explained, Available from https://www.caranddriver.com.

  • Jang, D.D., H.J. Jung, and H.J. Lee, 2011, Investigation of structural response reduction performance of smart passive system using real-time hybrid simulation, Adv. Sci. Lett. 4, 681–685.

    Article  Google Scholar 

  • Jastrzębski, Ł. and B. Sapiński, 2017, Electrical interface for an MR damper-based vibration reduction system with energy harvesting capability, 2017 18th International Carpathian Control Conference (ICCC), Sinaia, Romania, 189–192.

  • Jastrzębski, Ł. and B. Sapiński, 2018, Magnetorheological self-powered vibration reduction system with current cut-off: experimental investigation, Acta Mech. et Autom. 12, 96–100.

    Google Scholar 

  • Jin-qiu, Z., P. Zhi-zhao, Z. Lei, and Z. Yu, 2013, A review on energy-regenerative suspension systems for vehicles, Proceedings of the world congress on engineering, London, U.K. 3, 3–5.

    Google Scholar 

  • Jung, H.J., K.M. Choi, J.E. Jang, S.W. Cho, and I.W. Lee, 2006, MR damper-based smart passive control system for seismic protection of building structures, Proc.of SPIE Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, California, United States 6174, 617400.

    Google Scholar 

  • Jung, H.J., K.M. Choi, K.S. Park, and S.W. Cho, 2007, Seismic protection of base isolated structures using smart passive control system, Smart Struct. Syst. 3, 385–403.

    Article  Google Scholar 

  • Jung, H.J., K. Choi, I.W. Lee, and S.W. Cho, 2006, An MR Damper-based Control System Introducing Electromagnetic Induction Part, The 4th World Conference on Structural Control and Monitoring, San Diego, USA.

  • Jung, H.J., D.D. Jang, J.H. Koo, and S.W. Cho, 2010, Experimental evaluation of a ‘self-sensing’ capability of an electromagnetic induction system designed for MR dampers, J. Intell. Mater. Syst. Struct. 21, 827–835.

    Article  Google Scholar 

  • Jung, H.J., D.D. Jang, H.J. Lee, and S.W. Cho, 2008, Large-scale smart passive system for civil engineering applications, Proc. of SPIE Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, San Diego, California, United States 6932, 69320T.

    Google Scholar 

  • Jung, H.J., D.D. Jang, H.J. Lee, I.W. Lee, and S.W. Cho, 2010, Feasibility test of adaptive passive control system using MR fluid damper with electromagnetic induction part, J. Eng. Mech. 136, 254–259.

    Google Scholar 

  • Jung, H.J., I.H. Kim, and J.H. Koo, 2011, A multi-functional cable-damper system for vibration mitigation, tension estimation and energy harvesting, Smart Struct. Syst. 7, 379–392.

    Article  Google Scholar 

  • Jung, H.J., D.D. Jang, S.W. Cho, and J.H. Koo, 2009, Experimental verification of sensing capability of an electromagnetic induction system for an MR fluid damper based control system, J. Phys.: Conf. Ser. 149, 012058.

    Google Scholar 

  • Jung, H.J., D.D. Jang, K.M. Choi, and S.W. Cho, 2009, Vibration mitigation of highway isolated bridge using MR damper-based smart passive control system employing an electromagnetic induction part, Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures 16, 613–625.

    Article  Google Scholar 

  • Jung, H.S., S.H. Kwon, H.J. Choi, J.H. Jung, and Y.G. Kim, 2016, Magnetic carbonyl iron/natural rubber composite elastomer and its magnetorheology, Compos. Struct. 136, 106–112.

    Article  Google Scholar 

  • Kabariya, U. and S. James, 2020, Study on an Energy-Harvesting Magnetorheological Damper System in Parallel Configuration for Lightweight Battery-Operated Automobiles, Vibration 3, 162–173.

    Article  Google Scholar 

  • Kikuchi, T. and K. Kobayashi, 2011, Design and development of cylindrical MR fluid brake with multi-coil structure, J. Syst. Des. Dyn. 5, 1471–1484.

    Google Scholar 

  • Kim, I.H., D.D. Jang, H.J. Jung, and J.H. Koo, 2009, Smart damping system based on MR damper and electromagnetic induction device for suppressing vibration of stay cable, Proceeding of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS2009), Oxnard, California, USA 48968, 595–600.

    Article  Google Scholar 

  • Kim, I.H., H.J. Jung, and J.H. Koo, 2010, Experimental evaluation of a self-powered smart damping system in reducing vibrations of a full-scale stay cable, Smart Mater. Struct. 19, 115027.

    Article  Google Scholar 

  • Kitano, S., T. Komatsuzaki, I. Suzuki, M. Nogawa, H. Naito, and S. Tanaka, 2020, Development of a rigidity tunable flexible joint using magneto-rheological compounds—toward a multi-joint manipulator for laparoscopic surgery, Front. Robot. AI 7.

  • Koo, J.H., E. Ritchie, and S.W. Cho, 2007, Alternative power source for magneto-rheological dampers, Proc. of SPIE Active and Passive Smart Structures and Integrated Systems 2007, San Diego, California, United States 6525, 65250B.

    Article  Google Scholar 

  • Kwok, N.M., Q.P. Ha, T.H. Nguyen, J. Li, and B. Samali, 2006, A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization, Sens. Actuators, A 132, 441–451.

    Article  CAS  Google Scholar 

  • Lai, D.K. and D.H. Wang, 2005, Principle, modeling, and validation of a relative displacement self-sensing magnetorheological damper, Proc. of SPIE Smart Structures and Materials 2005: Smart Structures and Integrated Systems, San Diego, California, United States 5764, 130–141.

    Article  Google Scholar 

  • Lam, K.H., Z.H. Chen, Y.Q. Ni, and H.L.W. Chan, 2010, A magnetorheological damper capable of force and displacement sensing, Sens. Actuators, A 158, 51–59.

    Article  CAS  Google Scholar 

  • Lee, D.Y., Y.T. Choi, and N.M. Wereley, 2002, Performance analysis of ER/MR impact damper systems using Herschel-Bulkley model, J. Intell. Mater. Syst. Struct. 13, 525–531.

    Article  Google Scholar 

  • Lee, H.J., S.J. Moon, H.J. Jung, Y.C. Huh, and D.D. Jang, 2008, Integrated design method of MR damper and electromagnetic induction system for structural control, Proc. of SPIE Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, San Diego, California, United States 6932, 69320S.

    Google Scholar 

  • Li, Z. and J. Wang, 2010, Experiment investigation of magnetorheological damper for high impulsive load, Proceedings of ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Philadelphia, Pennsylvania, USA, 303–307.

  • Liu, G., F. Gao, and W.H. Lioa, 2020, Magnetorheological damper with multi-grooves on piston for damping force enhancement, Smart Mater. Struct. 30, 025007.

    Article  Google Scholar 

  • Mikhailov, V.P., A.M. Bazinenkov, P.A. Dolinin, and G.V. Stepanov, 2018, Research on the dynamic characteristics of a controlled magnetorheological elastometer damper, Instrum. Exp. Tech. 61, 427–432.

    Article  Google Scholar 

  • Munoz, B.C., 1997, Magnetorheological fluid, US Patent US5667715A.

  • Nguyen, Q.H. and S.B. Choi, 2009, Dynamic modeling of an electrorheological damper considering the unsteady behavior of electrorheological fluid flow, Smart Mater. Struct. 18, 055016.

    Article  Google Scholar 

  • Nguyen, Q.H., B.Q. Duy, and S.B. Choi, 2016, Development of a new clutch featuring MR fluid with two separated mutual coils In: Nguyen, Q.H., B.Q. Duy and S.-B. Choi, eds., AETA 2015: Recent Advances in Electrical Engineering and Related Sciences, Springer, 835–844.

  • Ouyang, Q., J. Wang, J.J. Zheng, X.J. Wang, and Y. Xi, 2015, Simulation and experimental analysis of magnetorheological dampers under impact and shock loading, Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition (IMECE2015), Houston, Texas, V04BT04A058.

  • Pang, H., F. Liu, and Z. Xu, 2018, Variable universe fuzzy control for vehicle semi-active suspension system with MR damper combining fuzzy neural network and particle swarm optimization, Neurocomputing 306, 130–140.

    Article  Google Scholar 

  • Parlak, Z., T. Engin, and I. Şahin, 2013, Optimal magnetorheological damper configuration using the Taguchi experimental design method, J. Mech. Des. 135.

  • Patil, S.R., K.P. Powar, and S.M. Sawant, 2016, Thermal analysis of magnetorheological brake for automotive application, Appl. Therm. Eng. 98, 238–245.

    Article  Google Scholar 

  • Phillips, R.W., 1969, Engineering applications of fluids with a variable yield stress, D. Eng. Thesis, University of California, Berkeley.

  • Potnuru, M.R., X. Wang, S. Mantripragada, and F. Gordaninejad, 2013, A compressible magneto-rheological fluid damper-liquid spring system, Int. J. Veh. Des. 63, 256–274.

    Article  Google Scholar 

  • Poynor, J.C., 2001, Innovative designs for magneto-rheological dampers, M.S. Thesis, Virginia Polytechnic Institute and State University.

  • Kou, F.R., L. Chen, and W. Zhang, 2016, Study on characteristics of self powered magnetorheological semi-active suspension. Hydraul. Pneum. 11, 10–14.

    Google Scholar 

  • Rahman, M., Z.C. Ong, S. Julai, M.M. Ferdaus, and R. Ahmed, 2017, A review of advances in magnetorheological dampers: their design optimization and applications, J. Zhejiang Univ. Sci. 18, 991–1010.

    Article  Google Scholar 

  • Rakheja, S., Y. Afework, and S. Sankar, 1994, An analytical and experimental investigation of the driver-seat-suspension system, Veh. Syst. Dyn. 23, 501–524.

    Article  Google Scholar 

  • Rashid, M.M., M.A. Aziz, and M.R. Khan, 2017, An Experimental Design of Bypass Magneto-Rheological (MR) damper, IOP Conf. Ser.-Mater. Sci. Eng. 260, 012021.

    Article  Google Scholar 

  • Rosół, M. and B. Sapiński, 2018, Velocity information reconstruction in an energy harvesting magnetorheological damper, 2018 19th International Carpathian Control Conference (ICCC), Szilvasvarad, Hungary, 603–607.

  • Rosół, M. and B. Sapiński, 2019, Ability of energy harvesting MR damper to act as a velocity sensor in vibration control systems, Acta Mech. et Autom. 13, 135–145.

    Google Scholar 

  • Şahin, İ., T. Engin, and Ş. Çeşmeci, 2010, Comparison of some existing parametric models for magnetorheological fluid dampers, Smart Mater. Struct. 19, 035012.

    Article  CAS  Google Scholar 

  • Salloom, M.Y., 2013, Intelligent magneto-rheological fluid directional control valve, International Journal of Innovation, Manage. Technol. 4, 406.

    Google Scholar 

  • Sapiński, B., 2010, Vibration power generator for a linear MR damper, Smart Mater. Struct. 19, 105012.

    Article  Google Scholar 

  • Sapiński, B., 2011, Characterization of semi-active vibration control system with energy regeneration based on MR damper, 2011 IEEE International Conference on Mechatronics, Istanbul, Turkey, 576–580.

  • Sapiński, B., 2011, Experimental study of a self-powered and sensing MR-damper-based vibration control system, Smart Mater. Struct. 20, 105007.

    Article  Google Scholar 

  • Sapiński, B., 2014, Energy-harvesting linear MR damper: prototyping and testing, Smart Mater. Struct. 23, 035021.

    Article  CAS  Google Scholar 

  • Sapiński, B., 2016, Experimental investigation of an energy harvesting rotary generator-MR damper system, J. Theor. Appl. Mech. 54, 679–690.

    Article  Google Scholar 

  • Sapiński, B., 2017, Laboratory testing of velocity sensing in a magnetorheological damper with power generation, Acta Mech. et Autom. 11, 186–189.

    Google Scholar 

  • Sapiński, B. and S. Krupa, 2013, Efficiency improvement in a vibration power generator for a linear MR damper: numerical study, Smart Mater. Struct. 22, 045011.

    Article  Google Scholar 

  • Sapiński, B. and A. Matras, 2018, Investigation of velocity sensing in harvesters for magnetorheological dampers, Acta Mech. et Autom. 12, 186–189.

    Google Scholar 

  • Sapiński, B., M. Rosół, and M. Węgrzynowski, 2016, Evaluation of an energy harvesting MR damper-based vibration reduction system, J. Theor. Appl. Mech. 54.

  • Sapiński, B., M. Rosół, and M. Węgrzynowski, 2016, Investigation of an energy harvesting MR damper in a vibration control system, Smart Mater. Struct. 25, 125017.

    Article  Google Scholar 

  • Sapiński, B. and Z. Szydło, Prototype constructions of magnetorheological dampers with energy harvesting capability prototypowe konstrukcje tłumików magnetoreologicznych.

  • Sapiński, B. and Z. Szydło, 2014, Prototype constructions of magnetorheological dampers with energy harvesting capability, Czasopismo Techniczne.

  • Sapiński, B. and M. Węgrzynowski, 2013, Experimental setup for testing rotary MR dampers with energy harvesting capability, Acta Mech. et Autom. 7, 241–244.

    Google Scholar 

  • Sapiński, B., M. Węgrzynowski, and J. Nabielec, 2018, Magnetorheological damper-based positioning system with power generation, J. Intell. Mater. Syst. Struct. 29, 1236–1254.

    Article  Google Scholar 

  • Schurter, K.C. and P.N. Roschke, 2000, Fuzzy modeling of a magnetorheological damper using ANFIS, Ninth IEEE International Conference on Fuzzy Systems. FUZZ-IEEE 2000 (Cat. No. 00CH37063), San Antonio, TX, USA, 122–127.

  • Dong, X.M., S.J. Peng, and J.Q. Yu, 2016, Study on characteristics of self powered vehicle magnetorheological damper, J. Mech. Eng. 52, 83–91.

    Article  Google Scholar 

  • Scruggs, J. and D.K. Lindner, 1999, Active energy control in civil structures, Proc. SPIE 3671, 194–205.

    Article  Google Scholar 

  • Segel, L. and X. Lu, 1982, Vehicular resistance to motion as influenced by road roughness and highway alignment, Aust. Road Res. 12, 211–222.

    Google Scholar 

  • Seid, S., S. Chandramohan, and S. Sujatha, 2018, Optimal design of an MR damper valve for prosthetic knee application, J. Mech. Sci.Technol. 32, 2959–2965.

    Article  Google Scholar 

  • Seid, S., S. Chandramohan, and S. Sujatha, 2019, Design Evaluation of a Mono-tube Magnetorheological (MR) Damper Valve In: Seid, S., S. Chandramohan and S. Sujatha, Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018), Springer, 145–151.

  • Shiao, Y., N.A. Ngoc, and C.H. Lai, 2016, Optimal design of a new multipole bilayer magnetorheological brake, Smart Mater. Struct. 25, 115015.

    Article  Google Scholar 

  • Sivrioglu, S. and F.C. Bolat, 2020, Switching linear quadratic Gaussian control of a flexible blade structure containing magnetorheological fluid, Trans. Inst. Meas. Control 42, 618–627.

    Article  Google Scholar 

  • Snamina, J. and B. Sapiński, 2011, Energy balance in self-powered MR damper-based vibration reduction system, Bull. Pol. Ac.: Tech. 59, 75–80.

    Google Scholar 

  • Sohn, J.W., J.S. Oh, and S.-B. Choi, 2015, Design and novel type of a magnetorheological damper featuring piston bypass hole, Smart Mater. Struct. 24, 035013.

    Article  Google Scholar 

  • Spencer Jr, B., S.J. Dyke, M.K. Sain, and J.D.F. Carlson, 1997, Phenomenological model for magnetorheological dampers, J. Eng. Mech. 123, 230–238.

    Google Scholar 

  • Stansbury III, J.A., 2012, Regenerative suspension with accumulator systems and methods, US Patent US20100281858A1.

  • Stanway, R., J.L. Sproston, and A.K. El-Wahed, 1996, Applications of electro-rheological fluids in vibration control: a survey, Smart Mater. Struct. 5, 464.

    Article  CAS  Google Scholar 

  • Strecker, Z., J. Roupec, I. Mazůrek, and M. Klapka, 2015, Limiting factors of the response time of the magnetorheological damper, Int. J. of Appl. Electrom. Mech. 47, 541–550.

    Google Scholar 

  • Strecker, Z., J. Roupec, I. Mazůrek, O. Macháček, and M. Kubík, 2018, Influence of response time of magnetorheological valve in Skyhook controlled three-parameter damping system, Adv. Mech. Eng. 10, 1687814018811193.

    Article  Google Scholar 

  • Strecker, Z., J. Roupec, I. Mazůrek, O. Macháček, and M. Kubík and M. Klapka, 2015, Design of magnetorheological damper with short time response, J. Intell. Mater. Syst. Struct. 26, 1951–1958.

    Article  CAS  Google Scholar 

  • Sun, Q., L. Zhang, J. Zhou, and Q. Shi, 2003, Experimental study of the semi-active control of building structures using the shaking table, Earthq. Eng Struct. Dyn. 32, 2353–2376.

    Article  Google Scholar 

  • Sun, S.S., D.H. Ning, J. Yang, H. Du, S.W. Zhang, and W.H. Li, 2016, A seat suspension with a rotary magnetorheological damper for heavy duty vehicles, Smart Mater. Struct. 25, 105032.

    Article  Google Scholar 

  • Sun, S.S., D.H. Ning, J. Yang, H. Du, S.W. Zhang, and W.H. Li and M. Nakano, 2017, Development of an MR seat suspension with self-powered generation capability, Smart Mater. Struct. 26, 085025.

    Article  Google Scholar 

  • Sun, S., J. Yang, W. Li, H. Deng, H. Du, and G. Alici, 2015, Development of an MRE adaptive tuned vibration absorber with self-sensing capability, Smart Mater. Struct. 24, 095012.

    Article  Google Scholar 

  • Sutrisno, J., A. Purwanto, and S.A. Mazlan, 2015, Recent progress on magnetorheological solids: materials, fabrication, testing, and applications, Adv. Eng. Mater. 17, 563–597.

    Article  CAS  Google Scholar 

  • Truong, D.Q. and K.K. Ahn, 2010, Identification and application of black-box model for a self-sensing damping system using a magneto-rheological fluid damper, Sens. Actuators, A 161, 305–321.

    Article  CAS  Google Scholar 

  • Truong, T.D., V.Q. Nguyen, B.T. Diep, D.T. Le, and Q.H. Nguyen, 2019, Speed control of rotary shaft at different loading torque using MR clutch, Proc. SPIE 10967, 109671N.

    Google Scholar 

  • Wang, D.H. and X.X. Bai, 2010, Pareto Optimization Based Tradeoff Between the Controllable Damping Force and the Relative Displacement Sensing of a Self-Sensing Magnetorheological Damper, ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Philadelphia, Pennsylvania, USA, 355–369.

  • Wang, D.H. and X.X. Bai, 2011, Pareto optimization-based tradeoff between the damping force and the sensed relative displacement of a self-sensing magnetorheological damper, J. Intell. Mater. Syst. Struct. 22, 1451–1467.

    Article  Google Scholar 

  • Wang, D.H. and X.X. Bai, 2013, A magnetorheological damper with an integrated self-powered displacement sensor, Smart Mater. Struct. 22, 075001.

    Article  Google Scholar 

  • Wang, D.H., X. Bai, and W.H. Liao, 2010, An integrated relative displacement self-sensing magnetorheological damper: prototyping and testing, Smart Mater. Struct. 19, 105008.

    Article  Google Scholar 

  • Wang, D.H. and W.H. Liao, 2009, Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part I: system integration and modelling, Veh. Syst. Dyn 47, 1305–1325.

    Article  Google Scholar 

  • Wang, D.H. and W.H. Liao, 2011, Magnetorheological fluid dampers: a review of parametric modelling, Smart Mater. Struct. 20, 023001.

    Article  Google Scholar 

  • Wang, D.H. and T. Wang, 2009, Principle, design and modeling of an integrated relative displacement self-sensing magnetorheological damper based on electromagnetic induction, Smart Mater. Struct. 18, 095025.

    Article  Google Scholar 

  • Wang, D.H., T. Wang, X.X. Bai, G. Yuan, and W.H. Liao, 2008, A self-sensing magnetorheological shock absorber for motorcycles, Proceedings of 19th International Conference on Adaptive Structures and Technologies, Ascona, Switzerland.

  • Wang, M., Z. Chen, and N.M. Wereley, 2019, Magnetorheological damper design to improve vibration mitigation under a volume constraint, Smart Mater. Struct. 28, 114003.

    Article  CAS  Google Scholar 

  • Wang, Q., M. Ahmadian, and Z. Chen, 2014, A novel double-piston magnetorheological damper for space truss structures vibration suppression, ShockVib. 2014.

  • Wang, T., H.B. Cheng, Z.C. Dong, and H.Y. Tam, 2013, Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid, J. Mater. Process. Technol. 213, 1532–1537.

    Article  Google Scholar 

  • Wang, X. and F. Gordaninejad, 1999, Flow analysis of field-controllable, electro-and magneto-rheological fluids using Herschel-Bulkley model, J. Intell. Mater. Syst. Struct. 10, 601–608.

    Article  Google Scholar 

  • Wang, Z., Z. Chen, H. Gao, and H. Wang, 2018, Development of a self-powered magnetorheological damper system for cable vibration control, Appl. Sci. 8, 118.

    Article  CAS  Google Scholar 

  • Wegrzynowski, M., 2014, Magnetorheological damper control in an energy-harvesting vibration reduction system, Proceedings of the 2014 15th International Carpathian Control Conference (ICCC), Velke Karlovice, Czech Republic, 679–683.

  • Wei, C. and H. Taghavifar, 2017, A novel approach to energy harvesting from vehicle suspension system: Half-vehicle model, Energy 134, 279–288.

    Article  Google Scholar 

  • Wereley, N.M., J. Cho, Y.T. Choi, and S.B. Choi, 2007, Magnetorheological dampers in shear mode, Smart Mater. Struct. 17, 015022.

    Article  Google Scholar 

  • Wereley, N.M., G.M. Kamath, and V. Madhavan, 1999, Hysteresis modeling of semi-active magnetorheological helicopter dampers, J. Intell. Mater. Syst. Struct. 10, 624–633.

    Article  Google Scholar 

  • Xie, L., J. Li, X. Li, L. Huang, and S. Cai, 2018, Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: design, modeling and experiments, Mech. Syst. Signal Process. 99, 859–872.

    Article  Google Scholar 

  • Xinchun, G., H. Yonghu, R. Yi, L. Hui, and O. Jinping, 2015, A novel self-powered MR damper: theoretical and experimental analysis, Smart Mater. Struct. 24, 105033.

    Article  CAS  Google Scholar 

  • Yang, G., Jr, B.F. Spencer, H.J. Jung, and J.D. Carlson, 2004, Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications, J. Eng. Mech. 130, 1107–1114.

    Google Scholar 

  • Yao, G.Z., F.F. Yap, G. Chen, W. Li, and S.H. Yeo, 2002, MR damper and its application for semi-active control of vehicle suspension system, Mechatronics 12, 963–973.

    Article  Google Scholar 

  • Yasrebi, N., A. Ghazavi, M.M. Mashhadi, and A. Yousefi-Koma, 2006, Magnetorheological fluid dampers modeling: Numerical and experimental, Proceeding of the 17th IASTED international conference modeling and simulation, Tehran, Iran.

  • Yazid, I.I.M., S.A. Mazlan, T. Kikuchi, H. Zamzuri, and F. Imaduddun, 2014, Magnetic circuit optimization in designing magnetorheological damper, Smart Struct. Syst. 14, 869–881.

    Article  Google Scholar 

  • Yazid, I.I.M., S.A. Mazlan, T. Kikuchi, H. Zamzuri, and F. Imaduddun, 2014, Design of magnetorheological damper with a combination of shear and squeeze modes, Mater. Des. (1980–2015) 54, 87–95.

    Article  Google Scholar 

  • Yoon, D.S., Y.J. Park, and S.B. Choi, 2019, An eddy current effect on the response time of a magnetorheological damper: analysis and experimental validation, Mech. Syst. Signal Process. 127, 136–158.

    Article  Google Scholar 

  • Yu, J., X. Dong, Z. Zhang, and P. Chen, 2019, A novel scissortype magnetorheological The integrated design of self-powered magneto-rheological damper with permanent magnet linear generator seat suspension system with self-sustainability, J. Intell. Mater. Syst. Struct. 30, 665–676.

    Article  Google Scholar 

  • Zeinali, M., S.A. Mazlan, S.B. Choi, F. Imaduddin, and L.H. Hamdan, 2016, Influence of piston and magnetic coils on the field-dependent damping performance of a mixed-mode magnetorheological damper, Smart Mater. Struct. 25, 055010.

    Article  CAS  Google Scholar 

  • Zhang, X., Z. Li, K. Guo, F. Zheng, and Z. Wang, 2017, A novel pumping magnetorheological damper: Design, optimization, and evaluation, J. Intell. Mater. Syst. Struct. 28, 2339–2348.

    Article  Google Scholar 

  • Zhang, Y., H. Chen, K. Guo, X. Zhang, and S.E. Li, 2017, Electro-hydraulic damper for energy harvesting suspension: Modeling, prototyping and experimental validation, Appl. Energy 199, 1–12.

    Article  Google Scholar 

  • Zheng, L., B. Niu, and K. Wang, 2014, The integrated design of self-powered magneto-rheological damper with permanent magnet linear generator, 21th international congress on sound and vibration, Beijing, China, 13–17.

  • Zhu, X., L. Deng, S. Sun, T. Yan, J. Yu, Z. Ma, and W. Li, 2020, Development of a variable stiffness magnetorheological damper with self-powered generation capability, J. Intell. Mater. Syst. Struct. 31, 209–219.

    Article  Google Scholar 

  • Zhu, X., X. Jing, and L. Cheng, 2012, Magnetorheological fluid dampers: a review on structure design and analysis, J. Intell. Mater. Syst. Struct. 23, 839–873.

    Article  Google Scholar 

  • Zhu, X., W. Wang, B. Yao, J. Cao, and Q. Wang, 2015, Analytical modeling and optimal design of a MR damper with power generation, 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Korea (South), 1531–1536.

Download references

Acknowledgement

The authors would like to convey their gratitude to the Abdal Engineering Limited, Bangladesh, for providing their facilities and research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Abdul Aziz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohtasim, S.M., Ahammed, R., Rahman, M.M. et al. Recent developments of regenerative magnetorheological (RMR) damper: A review. Korea-Aust. Rheol. J. 33, 201–224 (2021). https://doi.org/10.1007/s13367-021-0017-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-021-0017-x

Keywords

Navigation