Skip to main content
Log in

Simulation on hysteresis characteristic of squeeze mode magneto-rheological damper based on non-convex constitutive relation

  • Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Magneto-Rheological (MR) fluid is a controllable material upon the applied magnetic field, and various MR dampers with different structures are designed to take advantage of this unique property. In the current paper, the squeeze mode MR damper is analyzed. The two-dimensional MR fluid squeeze flow in the damper is simulated using the Navier-Stokes’ equations. The shear stress of MR fluid is characterized by a non-convex constitutive relation, which is capable of capturing the solid-like to liquid-like switching. The two-dimensional velocity field and pressure distribution of MR fluid are obtained, from which the damping force of the MR damper is obtained. The unique hysteresis characteristic of the force versus velocity relation of the MR damper is captured. Further, the dependence on the loading rate and the field strength of the hysteresis characteristic is studied in the current paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, J. and D.S. Kwon, 2003, Modeling of a magnetorheological actuator including magnetic hysteresis, J. Intell. Mater. Syst. Struct. 14, 541–550.

    Article  Google Scholar 

  • Cha, Y.J., J.Q. Zhang, A.K. Agrawal, B.P. Dong, A. Friedman, S.J. Dyke, and J. Ricles, 2013, Comparative studies of semi-active control strategies for MR dampers: Pure simulation and real-time hybrid tests, J. Struct. Eng. 139, 1237–1248.

    Article  Google Scholar 

  • Choi, K.M., H.J. Jung, S.W. Cho, and I.W. Lee, 2007, Application of smart passive damping system using MR damper to highway bridge structure, J. Mech. Sci. Technol. 21, 870–874.

    Article  Google Scholar 

  • Dominguez, A., R. Sedaghati, and I. Stiharu, 2004, Modelling the hysteresis phenomenon of magnetorheological dampers, Smart Mater Struct. 13, 1351–1361.

    Article  Google Scholar 

  • Felt, D.W., M. Hagenbuchle, J. Liu, and J. Richard, 1996, Rheology of a magnetorheological fluid, J. Intell. Mater Syst. Struct. 7, 589–593.

    Article  CAS  Google Scholar 

  • Gedik, E., H. Kurt, Z. Recebli, and C. Balan, 2012, Two-dimensional CFD simulation of magnetorheological fluid between two fixed parallel plates applied external magnetic field, Comput. Fluids 63, 128–134.

    Article  Google Scholar 

  • Guo, C.Y., X.L. Gong, S.H. Xuan, Q.F. Yan, and X.H. Ruan, 2013, Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field, Smart Mater. Struct. 22, 045020.

    Article  Google Scholar 

  • Halsey, T.C., J.E. Martin, and D. Adolf, 1992, Rheology of electrorheological fluids, Phys. Rev. Lett. 68, 1519–1522.

    Article  CAS  Google Scholar 

  • Hong, S.M., M.Y. Kim, D.J. Min, K.H. Lee, J.H. Shim, D.I. Kim, J.Y. Suh, W.S. Jung, and I.S. Choi, 2014, Unraveling the origin of strain-induced precipitation of M23C6 in the plastically deformed 347 austenite stainless steel, Mater. Charact. 94, 7–13.

    Article  CAS  Google Scholar 

  • Jin, F.Y., 2012, A study on the driving mechanisms of a magnetorheological servo-valve, Master’s thesis, Hangzhou Dianzi University

  • Jung, I.D., S.H. Kim, S.J. Park, S.J. Kim, T.G. Kang, and J.M. Park, 2014, Rheological modeling of strontium ferrite feedstock for magnetic powder injection molding, Powder Technol. 262, 198–202.

    Article  CAS  Google Scholar 

  • Kim, K.J., C.W. Lee, and J.H. Koo, 2008, Design and modeling of semi-active squeeze film dampers using magneto-rheological fluids, Smart Mater. Struct. 17, 035006.

    Article  Google Scholar 

  • Kim, S.H., S.J. Kim, S.J. Park, J.H. Mun, T.G. Kang, and J.M. Park, 2012, Rheological behavior of magnetic powder mixtures for magnetic PIM, Korea-Aust. Rheol. J. 24, 121–127.

    Article  Google Scholar 

  • Kim, Y., R. Langari, and S. Hurlebaus, 2009, Semiactive nonlinear control of a building with a magnetorheological damper system, Mech. Syst. Signal Proc. 23, 300–315.

    Article  Google Scholar 

  • Li, W.H., G.Z. Yao, G. Chen, S.H. Yeo, and F.F. Yap, 2000, Testing and steady state modeling of a linear MR damper under sinusoidal loading, Smart Mater. Struct. 9, 95–102.

    Article  Google Scholar 

  • Nguyen, T.M., C. Ciocanel, and M.H. Elahinia, 2012, A squeezeflow mode magnetorheological mount: Design, modeling, and experimental evaluation, J. Vib. and Acoust. 134, 021013.1–021013.11.

    Article  Google Scholar 

  • Nilsson, M. and N.G. Ohlson, 2000, An electrorheological fluid in squeeze mode, J. Intell. Mater. Syst. Struct. 11, 545–554.

    Article  Google Scholar 

  • Parlak, Z. and T. Engin, 2012, Time-dependent CFD and quasistatic analysis of magnetorheological fluid dampers with experimental validation, Int. J. Mech. Sci. 64, 22–31.

    Article  Google Scholar 

  • Prabakar, R.S., C. Sujatha, and S. Narayanan, 2009, Optimal semi-active preview control response of a half car vehicle model with magnetorheological damper, J. of Sound Vibr. 326, 400–420.

    Article  Google Scholar 

  • Spencer, B.F., S.J. Dyke, M.K. Sain, and J.D. Carlson, 1997, Phenomenological model for magnetorheological dampers, J. Eng. Mech. 123, 230–238.

    Article  Google Scholar 

  • de Vicente, J., D.J. Klingenberg, and R. Hidalgo-Alvarez, 2011, Magnetorheological fluids: A review, Soft Matter 7, 3701–3710.

    Article  CAS  Google Scholar 

  • Wang, L.X. and H. Kamath, 2006, Modelling hysteretic behaviour in magnetorheological fluids and dampers using phase-transition theory, Smart Mater. Struct. 15, 1725–1733.

    Article  Google Scholar 

  • Wang, X.J. and F. Gordaninejad, 2007, Flow analysis and modeling of field-controllable, electro- and magneto-rheological fluid dampers, J. Appl. Mech. 74, 13.

    Article  Google Scholar 

  • Zhang, C., Z.W. Chen, and L.X. Wang, 2015, An investigation on the field strength and loading rate dependences of the hysteretic dynamics of magnetorheological dampers, Mech. Time-Depend. Mater. 19, 61–74.

    Article  Google Scholar 

  • Zhu, X.C., X.J. Jing, and L. Cheng, 2012, Magnetorheological fluid dampers: A review on structure design and analysis, J. Intell. Mater. Syst. Struct. 23, 839–873.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Xiang Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Ying, ZX. & Wang, LX. Simulation on hysteresis characteristic of squeeze mode magneto-rheological damper based on non-convex constitutive relation. Korea-Aust. Rheol. J. 33, 261–271 (2021). https://doi.org/10.1007/s13367-021-0020-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-021-0020-2

Keyworks

Navigation