Skip to main content
Log in

An Experimental Investigation of the Reynolds Analogy and its Modifications Applied to Annular Condensation Laminar Flow of R134a in a Vertical Tube

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Reynolds analogy and its modifications are applied to forced convection laminar in-tube condensation to predict the heat transfer coefficient of R134a by means of well-known two-phase friction factors and agreed void fraction models and correlations explained in the authors’ previous works. The vertical test section is a 0.5 m long countercurrent flow double tube heat exchanger with refrigerant flowing in the inner smooth copper tube (8.1 mm i.d.) and cooling water flowing in the annulus (26 mm i.d.). The test runs are performed at average saturated condensing temperatures of 40 °C (Pr = 0.92) and 50 °C (Pr = 0.97). The heat fluxes are between 10.16 and 66.61 kW m−2 while the mass fluxes are between 260 and 515 kg m−2 s−1 for the vertical test sections. The Reynolds’ model is modified by various two-phase flow models and correlations to account for the partial condensation inside the tube. The refrigerant side heat transfer coefficients are determined within ±30% using the two-phase friction factors of Wallis, Moeck, Fore et al., while all the proposed friction factor correlations for the Reynolds analogy, Prandtl and Taylor analogy, and Colburn analogy predict the experimental friction factor within a ±20% deviation band. The importance of altering the Prandtl number to the Reynolds analogy (Pr = 1) is also shown in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

Inside surface area, m−2

C p :

Specific heat, J kg−1 K−1

d :

Internal tube diameter, m

f :

Friction factor

G :

Mass flux, kg m−2 s−1

h :

Heat transfer coefficient, W m−2 K−1

i :

Enthalpy, J kg−1

i fg :

Latent heat of condensation, J kg−1

L :

Length of test tube, m

k :

Thermal conductivity, W m−1 K−1

m :

Mass flow rate, kg s−1

P :

Pressure, MPa

Pr :

Prandtl number

r :

Internal tube radius, m

Re :

Reynolds number

S :

Slip ratio

T :

Temperature, °C

u :

Velocity, m s−1

Q :

Heat transfer rate, W

q :

Mean heat flux, kW m−2

x :

Mean vapor quality

y :

Wall coordinate

ΔP :

Pressure drop, Pa

ΔT :

Vapor side temperature difference, T satT wi, K

\({\varepsilon_{\rm c}}\) :

Conductive diffusivity/viscosity, m2 s−1

\({\varepsilon_{\rm m}}\) :

Eddy momentum diffusivity/viscosity, m2 s−1

\({\varepsilon_{\rm q}}\) :

Eddy heat diffusivity/viscosity, m2 s−1

ρ :

Density, kg m−3

μ :

Dynamic viscosity, kg m−1 s−1

δ :

Film thickness, m

δ + :

Dimensionless film thickness

α :

Void fraction

τ :

Shear stress, N m−2

ν :

Kinematic viscosity, m2 s−1

corr:

Correlation

exp:

Measured

f:

Fluid

g:

Gas/vapor

H:

Homogeneous

i:

Inlet

l:

Liquid

o:

Outlet

ph:

Preheater

ref:

Refrigerant

sat:

Saturation

SG:

Superficial

TS:

Test section

w:

Water

wi:

Inner wall

References

  1. Wallis G.B.: One-Dimensional Two-Phase Flow. McGraw-Hill, New York (1969)

    Google Scholar 

  2. Carey V.P.: Liquid-Vapor Phase Change Phenomena. Hemisphere Publishing, New York (1992)

    Google Scholar 

  3. Maheshwari N.K., Sinha R.K., Saha D., Aritomi M.: Inverstigation on condensation in presence of a noncondensible gas for a wide range of Reynolds number. Nucl. Eng. Des. 227, 219–238 (2004)

    Article  Google Scholar 

  4. Fukano T., Furukawa T.: Prediction of the effects of liquid viscosity on interfacial shear and frictional pressure drop in vertical upward gas–liquid annular flow. Int. J. Multiph. Flow 24, 587–603 (1998)

    Article  MATH  Google Scholar 

  5. Moeck E.O.: Annular-dispersed two-phase flow and critical heat flux. AECL 3656, 337–346 (1970)

    Google Scholar 

  6. Fore L.B., Beus S.G., Bauer R.C.: Interfacial friction in gas–liquid annular flow: analogies to full and transition roughness. Int. J. Multiph. Flow 26, 1755–1769 (2000)

    Article  MATH  Google Scholar 

  7. Fanning, J.T.: A Practical Treatise on Hydraulic and Water Supply Engineering. Van Nostrand, New York (1877) [Revised ed. 1886]

  8. Darcy H.: Recherches experimentales relatives au mouvement de l’Eau dans les Tuyaux. Mallet-Bachelier, Paris (1857)

    Google Scholar 

  9. Weisbach, J.: Lehrbuch der Ingenieur und Maschinen-Mechanik, Braunschwieg (1845)

  10. Wongwises S., Kongkiatwanitch W.: Interfacial friction factor in vertical upward gas–liquid annular two-phase flow. Int. Commun. Heat Mass Transf. 28, 323–336 (2001)

    Article  Google Scholar 

  11. Soliman H.M., Feingold A.: of fully developed laminar flow in longitudinal internally finned tubes. Chem. Eng. J. 14, 119–128 (1977)

    Article  Google Scholar 

  12. Al-Sarkhi A., Hanratty T.J.: Effect of pipe diameter on the performance of drag-reducing polymers in annular gas–liquid flows. Inst. Chem. Eng. 79, 402–408 (2001)

    Article  Google Scholar 

  13. Choi, J.Y.; Kedzierski, M.A.; Domanski, P.A.: Generalized pressure drop correlation for evaporation and condensation in smooth and microfin tubes. In: Proceedings of IIF-IIR Commision B1, vol. B4, Paderborn, Germany, pp. 1–9 (2001)

  14. Pierre, B.: Flow resistance with boiling refrigerants-part l. ASHRAE J. 6, 58–65 (1964)

    Google Scholar 

  15. Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. u. Phys. 56, 1–37 (1908)

    Google Scholar 

  16. Reynolds O.: On the extent and action of the heating surface of steam boilers. Proc. Manch. Lit. Phil. Soc. 8, 7–12 (1874)

    Google Scholar 

  17. Prandtl, L.: Eine Beziehung zwischen WS.rmeaustausch und. Str6mungswiderstand bei Fliissigkeiten. Zeitschrift far Physik 11, 1072–1078 (1910)

    Google Scholar 

  18. Taylor, G.I.: British Advisory Committee for Aeronautics. Reports and Memoranda, No. 272 (1916)

  19. Colburn A.P.: A method of correlating forced convection heat transfer data and a comparison with fluid friction. Trans. Am. Inst. Chem. Eng. 29, 174–210 (1933)

    Google Scholar 

  20. Ambrosini, W.; Forgione, N.; Manfredini, A.; Oriolo, F.: On various forms of the heat and mass transfer analogy: Discussion and application to condensation experiments. Nucl. Eng. Des. 236, 1013–1027 (2006)

    Google Scholar 

  21. Chitti, M.S.; Anand, N.K.: An analytical model for local heat transfer coefficients for forced convective condensation inside smooth horizontal tubes. Int. J. Heat Mass Transf. 38, 615–627 (1995)

    Google Scholar 

  22. Kim M.H., Corradini M.L.: of condensation heat transfer in a reactor containment. Nucl. Eng. Des. 118, 193–212 (1990)

    Article  Google Scholar 

  23. Dalkilic, A.S.; Laohalertdecha, S.; Wongwises, S.: Effect of void fraction models on the two-phase friction factor of R134a during condensation in vertical downward flow in a smooth tube. Int. Commun. Heat Mass Transf. 35, 921–927 (2008)

    Google Scholar 

  24. Dalkilic, A.S.; Yildiz, S.; Wongwises, S.: Experimental investigation of convective heat transfer coefficient during downward laminar flow condensation of R134a in a vertical smooth tube. Int. J. Heat Mass Transf. 52, 142–150 (2009)

    Google Scholar 

  25. Dalkilic, A.S.; Laohalertdecha, S.; Wongwises, S.: Two-phase friction factor in vertical downward flow in high mass flux region of refrigerant HFC-134a during condensation. Int. Commun. Heat Mass Transf. 35, 1147–1152 (2008)

    Google Scholar 

  26. Dalkilic, A.S.; Laohalertdecha, S.; Wongwises, S.: Effect of void fraction models on the film thickness of R134a during downward condensation in a vertical smooth tube. Int. Commun. Heat Mass Transf. 36, 172–179 (2009)

    Google Scholar 

  27. Dalkilic A.S., Wongwises S.: Intensive literature review of condensation inside smooth and enhanced tubes. Int. J. Heat Mass Transf. 52, 3409–3426 (2009)

    Article  Google Scholar 

  28. Dalkilic, A.S.; Laohalertdecha, S.; Wongwises, S.: Experimental investigation on heat transfer coefficient of R134a during condensation in vertical downward flow at high mass flux in a smooth tube. Int. Commun. Heat Mass Transf. 36, 1036–1043 (2009)

    Google Scholar 

  29. Dalkilic, A.S.; Agra, O.; Teke, I.; Wongwises, S.: Comparison of frictional pressure drop models during annular flow condensation of R600a in a horizontal tube at low mass flux and of R134a in a vertical tube at high mass flux. Int. J. Heat Mass Transf. 53, 2052–2064 (2010)

    Google Scholar 

  30. Dalkilic, A.S.; Wongwises, S.: An investigation of a model of the flow pattern transition mechanism in relation to the identification of annular flow of R134a in a vertical tube using various void fraction models and flow regime maps. Exp. Therm. Fluid Sci. 34, 692–705 (2010)

    Google Scholar 

  31. Dalkilic, A.S.; Laohalertdecha, S.; Wongwises, S.: Validation of void fraction models and correlations using a flow pattern transition mechanism model in relation to the identification of annular vertical downflow in-tube condensation of R134a. Int. Commun. Heat Mass Transf. 37, 827–837 (2010)

    Google Scholar 

  32. Dalkilic A.S., Laohalertdecha S., Wongwises S.: Experimental study of the condensation heat transfer coefficients in high mass flux region in annular flow regime of HFC-134a inside the vertical smooth tube. Heat Transf. Eng. 32, 33–44 (2011)

    Article  Google Scholar 

  33. Dalkilic, A.S.; Laohalertdecha, S.; Wongwises, S.: New experimental approach on the determination of condensation heat transfer coefficient using frictional pressure drop and void fraction models in a vertical tube. Energy Convers. Manag. 51, 2535–2547 (2010)

    Google Scholar 

  34. Dalkilic A.S., Wongwises S.P: A performance comparison of vapour compression refrigeration system using various alternative refrigerants. Int. Commun. Heat Mass Transf. 37, 1340–1349 (2010)

    Article  Google Scholar 

  35. Dalkilic, A.S.; Teke, I.; Wongwises, S.: Experimental analysis for the determination of the convective heat transfer coefficient by measuring pressure drop directly during annular condensation flow of R134a in a vertical smooth tube. Int. J. Heat Mass Transf. 54, 1008–1014 (2011)

    Google Scholar 

  36. Balcilar M., Dalkilic A.S., Wongwises S.: Artificial neural network (ANN) techniques for the determination of condensation heat transfer characteristics during downward annular flow of R134a inside a vertical smooth tube. Int. Commun. Heat Mass Transf. 38, 75–84 (2011)

    Article  Google Scholar 

  37. Dalkilic A.S.: Condensation pressure drop characteristics of various refrigerants in a horizontal smooth tube. Int. Commun. Heat Mass Transf. 38, 504–512 (2011)

    Article  Google Scholar 

  38. Balcılar, M.; Dalkilic, A.S.; Bolat, B.; Wongwises, S.: Investigation of empirical correlations on the determination of condensation heat transfer characteristics using computational numerical methods during downward annular flow of R134a inside a vertical smooth tube. J. Mech. Sci. Technol. 25, 2683–2701 (2011)

    Google Scholar 

  39. Dalkilic, A.S.; Kurekci, N.A.; Wongwises, S.: Effect of void fraction and friction factor models on the prediction of pressure drop of R134a during downward condensation in a vertical tube. Heat Mass Transf. 48, 123–139 (2012)

    Google Scholar 

  40. Chen S.L., Gerner F.M., Tien C.L.: General film condensation correlations. Exp. Heat Transf. 1, 93–107 (1987)

    Article  Google Scholar 

  41. Chisholm, D.: Two phase flow in pipelines and heat exchangers. George Godwin in association with The Institution of Chemical Engineers, London (1983)

  42. Soliman H.M.: On the annular-to-wavy flow pattern transition during condensation inside horizontal tubes. Can. J. Chem. Eng. 60, 475–481 (1982)

    Article  Google Scholar 

  43. Smith S.L.: Void fractions in two-phase flow: a correlation based upon an equal velocity head model. Proc. Inst. Mech. Eng. 36, 647–664 (1969)

    Google Scholar 

  44. Turner, J.M.; Walli,s G.B.:The separate-cylinders model of two-phase flow, paper no. NYO-3114-6, Thayer’s School of Engineering, Dartmouth College, Hanover, NH, USA (1965)

  45. Spedding P.L., Spence D.R.: of holdup in two phase flow. Int. J. Eng. Fluid Mech. 2, 109–118 (1989)

    Google Scholar 

  46. Kline S.J., McClintock F.A.: Describing uncertainties in single sample experiments. Mech. Eng. 75, 3–8 (1953)

    Google Scholar 

  47. Moser K., Webb R.L., Na B.: A new equivalent Reynolds number model for condensation in smooth tubes. Int. J. Heat Transf. 120, 410–417 (1998)

    Article  Google Scholar 

  48. Scarborough J.B.: Numerical Mathematical Analysis. Oxford & IBH, New Delhi (1966)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Dalkilic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalkilic, A.S., Kundu, B. & Wongwises, S. An Experimental Investigation of the Reynolds Analogy and its Modifications Applied to Annular Condensation Laminar Flow of R134a in a Vertical Tube. Arab J Sci Eng 38, 1493–1507 (2013). https://doi.org/10.1007/s13369-013-0595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0595-0

Keywords

Navigation