Skip to main content

Advertisement

Log in

Damage Categorization of Glass/Epoxy Composite Material Under Mode II Delamination Using Acoustic Emission Data: A Clustering Approach to Elucidate Wavelet Transformation Analysis

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Delamination is the most common failure mode in composite materials, since it will result in the reduction of stiffness and can grow throughout other layers. Delamination consists of two main stages: initiation and propagation. Understanding the behavior of the material in these zones is imperative, hence the identification of this mode of failure is of great importance. There are several methods to identify damage in materials, one of which is using acoustic emission (AE) signals. Most of the pervious works have used statistical methods based on the energy of AE signals, but in this study, the normalized form of shock wave is used. The aim of this study is to extract a general pattern for specific damage from AE signals including all of the other damage signals. The method consists of a discrete wavelet packet decomposition of AE signals accompanied with a clustering algorithm, which gives the distribution of the normalized AE signal energy on the frequency band. Test set-up involved End Notched Flexure (ENF) test to detect mode II delamination on glass/epoxy composite material. The data obtained from ENF test specimens is used for the wavelet packet decomposition, and the energy of different levels of decomposition for each shock wave is clustered using different clustering algorithms including K-means and Fuzzy C-mean. Scanning Electron Microscope was used to validate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalogiannakis G., Quintelier J., De Baets P., Degrieck J., Van Hemelrijck D.: Identification of wear mechanisms of glass/polyester composites by means of acoustic emission. Wear 264, 235–244 (2008)

    Article  Google Scholar 

  2. Nechad, H.; Helmstetter, A.; El Guerjouma, R.; Sornette, D.: Creep ruptures in heterogeneous materials. Phys. Rev. Lett. 94 (2005)

  3. Ducret D., El Guerjouma R., Jayet Y., Baboux J.C.: Anisotropic damage evaluation in polymer fiber composites under hygrothermal aging by means of ultrasonic techniques. Rev. Progr. Quant. Nondestruct. Eval. 20B, 1199–1206 (2000)

    Google Scholar 

  4. Marec, A.; Thomas, J.H.; El Guerjouma, R.: Etude multivariable par e′mission acoustique de l’endommagement et de la rupture des mate′riaux composites sollicite′s en fluage. In: Proceedings of the CFApp., pp. 793–796 (2006)

  5. de Morais, A.B.; De Moura, M.F.; Marques, A.T.; de Castro, P.T.: Mode-I interlaminar fracture of carbon/epoxy cross-ply composites. Compos. Sci. Tech. 62, 679–86 (2002)

    Google Scholar 

  6. Ashcroft, I.A.; Hughes, D.J.; Shaw, S.J.: Mode I fracture of epoxy bonded composite joints: 1. Quasi-static loading& 2. Inter J Adhesive. 21, 87–99 (2001)

    Google Scholar 

  7. Stevanovic D., Jar P.Y.B., Kalyanasundaram S., Lowe A.: On crack initiation conditions for mode I and mode II delamination testing of composite materials. Compos. Sci. Tech. 60, 1879–1887 (2000)

    Article  Google Scholar 

  8. Sun C.T., Zheng S.: Delamination characteristics of double cantilever beam and end-notched flexure composite specimens. Compos. Sci. Tech. 56, 451–459 (1996)

    Article  Google Scholar 

  9. Yan A.M., Marechal E., Nguyen-Dang H.: A finite-element model of mixed-mode delamination in laminated composites with an Rcurve effect. Compos. Sci. Tech. 61, 1413–1427 (2001)

    Article  Google Scholar 

  10. Ativitavas, N.; Fowler, T.; Pothisiri, T.: Acoustic emission characteristics of pultruded fiber reinforced plastics under uniaxial tensile stress, pp. 447–454. European WG on AE, Berlin (2004)

  11. Yoon, D.J.; Weiss, W.; Shah, S.P.: Assessing damage corroded reinforced concrete using in acoustic emission. J. Eng. Mech. 273–283 (2000)

  12. Magalhaes A.G., de Moura M.F.: Application of acoustic emission to study creep behavior of composite bonded lap shear joints. NDT&E Int. 38, 45–52 (2005)

    Article  Google Scholar 

  13. Calabro A., Esposito C., Lizza A., Giordano M., D’Amore A., Nicolais L.: Analysis of the acoustic emission signals associated to failure modes in CFRP laminates. ECCM 8, 425–432 (1997)

    Google Scholar 

  14. Barre S., Benzeggagh M.-L.: On the use of acoustic emission to investigate damage mechanisms in glass-fiber reinforced polypropylene. Compos. Sci. Technol. 52, 369–376 (1994)

    Article  Google Scholar 

  15. El Guerjouma R.: Non-destructive evaluation of damage and failure of fiber reinforced polymer composites using ultrasonic waves and acoustic emission. Adv. Eng. Mater. 3, 601–608 (2001)

    Article  Google Scholar 

  16. Godin N., Huguet S., Gaertner R., Salmon L.: Clustering of acoustic emission signals collected during tensile tests on unidirectionnal glass/polyester composites using supervised and unsupervised classifiers. NDT&E Int. 37, 253–264 (2004)

    Article  Google Scholar 

  17. Kostopoulos V., Loutas T.H., Kontsos A., Sotiriadis G., Pappas Y.Z.: On the identification of the failure mechanisms in oxide/oxide composites using acoustic emission. NDT&E Int. 36, 571–580 (2003)

    Article  Google Scholar 

  18. Johnson M.: Waveform based clustering and classification of AE transients in composite laminates using principal component analysis. NDT&E Int. 35, 367–376 (2002)

    Article  Google Scholar 

  19. Ono, K.; Huang, Q.: Pattern recognition analysis of acoustic emission signals. Acoustic Emission VII, The Japanese Society for NDI, pp. 69–78 (1994)

  20. Pappas Y.Z., Markopoulos Y.P., Kostopoulos V.: Failure mechanisms analysis of 2D carbon/carbon using acoustic emission monitoring. NDT&E Int. 31, 157–163 (1998)

    Article  Google Scholar 

  21. Godin N., Huguet S., Gaertner R.: Integration of the Kohonen’s self-organising map and K-means algorithm for the segmentation of the AE data collected during tensile tests on cross-ply composites. NDT&E Int. 38, 299–309 (2005)

    Article  Google Scholar 

  22. Kohonen T.: Self-organized network. In: Proc. IEEE 43, 59–69 (1990)

    Google Scholar 

  23. Likas A., Vlassis N., Verbeek J.: The global K-means clustering algorithm. Pattern Recognit. 366(2), 451–461 (2003)

    Article  Google Scholar 

  24. Dubuisson, B.: Diagnostic intelligence artificielle et reconnaissance des formes. Herme‘ s Science Publications (2001)

  25. Bezdek J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  26. Jolliffe I.T.: Principal Component Analysis. Springer, Berlin (1986)

    Book  Google Scholar 

  27. Ramirez-Jimenez C., Papadakis N., Reynolds N.: Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission events. Compos. Sci. Technol. 64, 1819–1827 (2004)

    Article  Google Scholar 

  28. Bohse, J.: Damage analysis of polymer matrix composites by acoustic emission testing. European WG on AE, Berlin, pp. 339–348 (2004)

  29. Giordano M., Calabro A., Esposito C., Amore A.D., Nicolais L.: An acoustic-emission characterization of the failure modes in polymer-composite materials. Compos. Sci. Technol. 58, 1923–1928 (1998)

    Article  Google Scholar 

  30. Ni Q.Q., Iwamoto M.: Wavelet transforms of acoustic emission signals in failure of model composites. Eng. Fract. Mech. 69, 717–728 (2002)

    Article  Google Scholar 

  31. De Groot P.J., Wijnen P.A.M., Janssen R.B.F.: Real time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites. Compos. Sci. Technol. 55, 405–412 (1995)

    Article  Google Scholar 

  32. Ferreira D.B., Da Silva R.R., Rebello J.M.A., Siqueira M.H.S.: Failure mechanism characterization in composite materials using spectral analysis and the wavelet transform of acoustic emission signals. INSIGHT 46(6), 282–289 (2004)

    Article  Google Scholar 

  33. Suzuki H., Kinjo T., Hayashi Y., Takemoto M., Ono K.: Wavelet transform of acoustic emission signals. J. Acoust. Emiss. 14, 69–84 (1996)

    Google Scholar 

  34. Qi G., Barhorst A., Hashemi J., Kamala G.: Discrete wavelet decomposition of acoustic emission signals from carbon-fiber reinforced composites. Compos. Sci. Technol. 57, 389–403 (1997)

    Article  Google Scholar 

  35. Velayudham, A.; Krishnamurthy, R.; Soundarapandian, T.: Acoustic emission based drill condition monitoring during drilling of glass/phenolic polymeric composite using wavelet packet transform. Mater. Sci. Eng. Part A 412, 141–145 (2005)

    Google Scholar 

  36. Soman K.P., Ramachandran K.I.: Insight into Wavelets from Theory to Practice. Prentice-Hall, India (2004)

    Google Scholar 

  37. Shinde, A.D.: A wavelet packet based shifting process and its application for structural health monitoring. M.Sc. Thesis, Worcester Polytechnic Institute, Department of Mechanical Engineering, USA (2004)

  38. Francisco, A.T.; de Carvalho.: Fuzzy C-means clustering methods for symbolic interval data. Pattern Recognit. Lett. 28(4), 423–437 (2007)

  39. Sadaaki M.: Information clustering based on fuzzy multisets. Inf. Process. Manage. 39(2), 195–213 (2003)

    Article  MATH  Google Scholar 

  40. Zhuang X., Yan X.: Investigation of damage mechanisms in self-reinforced polyethylene composites by acoustic emission. Compos. Sci. Technol. 66, 444–449 (2006)

    Article  Google Scholar 

  41. Bohse J.: Acoustic emission characteristics of micro failure processes in polymer blends and composites. Compos. Sci. Technol. 60, 1213–1226 (2000)

    Article  Google Scholar 

  42. Ramirez-Jimenez C.R., Papadakis N., Reynolds N., Gan T.H., Purnell P., Pharaoh M.: Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission event. Compos. Sci. Technol. 64, 1819–1827 (2004)

    Article  Google Scholar 

  43. Haselbach W., Lauke B.: Acoustic emission of debonding between fibre and matrix to evaluate local adhesion. Compos. Sci. Technol. 63, 2155–2162 (2003)

    Article  Google Scholar 

  44. Ni Q-Q., Iwamoto M.: Wavelet transform of acoustic emission signals in failure of model composites. Eng. Fract. Mech. 69, 717–728 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yousefi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yousefi, J., Ahmadi, M., Shahri, M.N. et al. Damage Categorization of Glass/Epoxy Composite Material Under Mode II Delamination Using Acoustic Emission Data: A Clustering Approach to Elucidate Wavelet Transformation Analysis. Arab J Sci Eng 39, 1325–1335 (2014). https://doi.org/10.1007/s13369-013-0712-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0712-0

Keywords

Navigation