Skip to main content
Log in

Optimization of Wavelet-ANFIS and Wavelet-ANN Hybrid Models by Taguchi Method for Groundwater Level Forecasting

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the recent years, artificial intelligence techniques have been widely developed for modeling hydrologic processes. Determining the best structures of these models such as Wavelet-ANN and Wavelet-ANFIS still remains a difficult task. In fact, there are several factors in the structure of these models that should be optimized. Selecting the best model structure by testing all of the possible combinations of factors is very time consuming and labor intensive. Using the optimization Taguchi method, this study assessed different factors affecting the performance of Wavelet-ANN and Wavelet-ANFIS hybrid models each of which has several levels. A L18 orthogonal array was selected according to the selected factors and levels and experimental tests were performed accordingly. Analysis of the signal-to-noise (S/N) ratio was used to evaluate the models performance. The optimum structures for both models were determined. For Wavelet-ANN, a model having 14 neurons in the hidden layer and trained with 1,000 epochs using Tangent Sigmoid (TanSig) transfer function in both hidden and output layers, and trained with Levenberg–Marquardt (LM) algorithm, whose input data were decomposed using Reverse Bior 1.5 (rbio1.5) wavelet in level 2, is the optimal Wavelet-ANN model. For Wavelet-ANFIS, a model with 700 iterations, using bell-shaped membership function and 5 membership functions, whose input data were decomposed using Daubechies 4 (db4) wavelet in level 2, is the optimal Wavelet-ANFIS model. Confirmation tests were then conducted using the optimum structures. It is also concluded that the best Wavelet-ANFIS model outperforms the best Wavelet-ANN model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prinos, S.T.; Lietz, A.C.; Irvin, R.B.: Design of a Real-Time Groundwater Level Monitoring Network and Portrayal of Hydrologic Data in Southern Florida. In: USGC Water Resources Investigations Report (2002)

  2. Adamowski, J.; Chan, H.F.: A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 407(1–4), 28–40 (2011)

    Google Scholar 

  3. Kuo Y.-M., Liu C.-W., Lin K.-H.: Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan. Water Res. 38(1), 148–158 (2004)

    Article  Google Scholar 

  4. Aqil M., Kita I., Yano A., Nishiyama S.: Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool. J. Environ. Manag. 85(1), 215–223 (2007)

    Article  Google Scholar 

  5. Nayak, P.C.; Sudheer, K.P.; Rangan, D.M.; Ramasastri, K.S.: A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 291(1–2), 52–66 (2004)

    Google Scholar 

  6. Daliakopoulos, I.N.; Coulibaly, P.; Tsanis, I.K.: Groundwater level forecasting using artificial neural networks. J. Hydrol. 309(1–4), 229–240 (2005)

    Google Scholar 

  7. Mohammadi, K.: Groundwater table estimation using MODFLOW and artificial neural networks, vol. 68(2). Water Science and Technology Library (2008)

  8. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990). doi:10.1109/18.57199

    Google Scholar 

  9. Loboda, N.S.; Glushkov, A.V.; Khokhlov, V.N.; Lovett, L.: Using non-decimated wavelet decomposition to analyse time variations of North Atlantic Oscillation, eddy kinetic energy, and Ukrainian precipitation. J. Hydrol. 322(1–4), 14–24 (2006)

    Google Scholar 

  10. Pasquini, A.I.; Depetris, P.J.: Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: An overview. J. Hydrol. 333(2–4), 385–399 (2007)

    Google Scholar 

  11. Kisi, Ö.: Stream flow forecasting using neuro-wavelet technique. Hydrol. Process. 22(20), 4142–4152 (2008). doi:10.1002/hyp.7014

  12. Kisi Ö.: Neural networks and wavelet conjunction model for intermittent streamflow forecasting. J. Hydrol. Eng. 14(8), 773–782 (2009)

    Google Scholar 

  13. Nourani V., Alami M.T., Aminfar M.H.: A combined neural-wavelet model for prediction of watershed precipitation, Lighvanchai, Iran. Eng. Appl. Artif. Intell. 16, 1–12 (2009)

    Google Scholar 

  14. Nourani, V.; Kisi, Ö.; Komasi, M.: Two hybrid Artificial Intelligence approaches for modeling rainfall–runoff process. J. Hydrol. 402(1–2), 41–59 (2011)

    Google Scholar 

  15. Vafakhah, M.: Application of artificial neural networks and adaptive neuro-fuzzy inference system models to short-term streamflow forecasting. Can. J. Civil Eng. 39(4), 402–414 (2012). doi:10.1139/l2012-011

  16. Eslamian, S.S.; Gohari, S.A.; Zareian M.J.; Firoozfar, A.: Estimating Penman–Monteith reference evapotranspiration using artificial neural networks and genetic algorithm: A case study. Arab. J. Sci. Eng. 37(4), 935–944 (2012)

    Google Scholar 

  17. Rakhshandehroo, G.A.; Vaghefi, M.; Asadi Aghbolaghi, M.: Forecasting groundwater level in shiraz plain using artificial neural networks. Arab. J. Sci. Eng. 37(5), 254–267 (2012)

    Google Scholar 

  18. Taguchi, G.: Introduction to Quality Engineering. McGraw-Hill, New York (1990)

  19. Ross, P.J.: Taguchi techniques for quality engineering, 2nd edn. McGraw-Hill, New York (1988)

  20. Chou C.-S., Ho C.-Y., Huang C.-I.: The optimum conditions for comminution of magnetic particles driven by a rotating magnetic field using the Taguchi method. Adv. Powder Technol. 20(1), 55–61 (2009)

    Article  Google Scholar 

  21. Chou, C.-S.; Yang, R.-Y.; Chen, J.-H.; Chou, S.-W.: The optimum conditions for preparing the lead-free piezoelectric ceramic of Bi0.5Na0.5TiO3 using the Taguchi method. Powder Technol. 199(3), 264–271 (2010)

    Google Scholar 

  22. Wang T.-Y., Huang C.-Y.: Improving forecasting performance by employing the Taguchi method. Eur. J. Oper. Res. 176(2), 1052–1065 (2007)

    Article  MATH  Google Scholar 

  23. Singaravelu, J.; Jeyakumar, D.; Nageswara Rao, B.: Taguchi’s approach for reliability and safety assessments in the stage separation process of a multistage launch vehicle. Reliab. Eng. Sys. Saf. 94(10), 1526–1541 (2009)

    Google Scholar 

  24. Oztop M.H., Sahin S., Sumnu G.: Optimization of microwave frying of potato slices by using Taguchi technique. J. Food Eng. 79(1), 83–91 (2007)

    Article  Google Scholar 

  25. Al-Darrab I.A., Khan Z.A., Zytoon M.A., Ishrat S.I.: Application of the Taguchi method for optimization of parameters to maximize text message entering performance of mobile phone users. Int. J. Qual. Reliab. Manag. 26, 469–479 (2009)

    Article  Google Scholar 

  26. Dingal, S.; Pradhan, T.; Sundar, J.; Choudhury, A.; Roy, S.: The application of Taguchi’s method in the experimental investigation of the laser sintering process. Int. J. Adv. Manuf. Technol. 38(9), 904–914 (2008) doi:10.1007/s00170-007-1154-1

    Google Scholar 

  27. Aber, S.; Salari, D.; Parsa, M.R.: Employing the Taguchi method to obtain the optimum conditions of coagulation–flocculation process in tannery wastewater treatment. Chem. Eng. J. 162(1), 127–134 (2010)

    Google Scholar 

  28. Zolfaghari, G.; Esmaili-Sari, A.; Anbia, M.; Younesi, H.; Amirmahmoodi, S.; Ghafari-Nazari, A.: Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon. J. Hazard. Mater. 192(3), 1046–1055 (2011)

    Google Scholar 

  29. Palanikumar, K.; Prakash, S.; Shanmugam, K.: Evaluation of delamination in drilling GFRP composites. Mater. Manuf. Process. 23(8), 858–864 (2008) doi:10.1080/10426910802385026

    Google Scholar 

  30. Hasçalı k, A.; Çaydaş, U.: Optimization of turning parameters for surface roughness and tool life based on the Taguchi method. Int. J. Adv. Manuf. Technol. 38(9), 896–903 (2008). doi:10.1007/s00170-007-1147-0

  31. Rosa J.L., Robin A., Silva M.B., Baldan C.A., Peres M.P.: Electrodeposition of copper on titanium wires: Taguchi experimental design approach. J. Mater. Process. Technol. 209(3), 1181–1188 (2009)

    Article  Google Scholar 

  32. Türkmen,  I.; Gül, R.; Çelik, C.: A Taguchi approach for investigation of some physical properties of concrete produced from mineral admixtures. Build. Environ. 43(6), 1127–1137 (2008)

    Google Scholar 

  33. Chang, K.-Y.; Lin, H.-J.; Chen, P.-C.: The optimal performance estimation for an unknown PEMFC based on the Taguchi method and a generic numerical PEMFC model. Int. J. Hydrog. Energy 34(4), 1990–1998 (2009)

    Google Scholar 

  34. Zeng, M.; Tang, L.H.; Lin, M.; Wang, Q.W.: Optimization of heat exchangers with vortex-generator fin by Taguchi method. Appl. Thermal Eng. 30(13), 1775–1783 (2010)

    Google Scholar 

  35. Lakshminarayanan A.K., Balasubramanian V.: Process parameters optimization for friction stir welding of RDE-40 aluminum alloy using Taguchi technique. Chin. J. Nonferrous Metals 18, 548–554 (2008)

    Google Scholar 

  36. Yasuri, M.: The study of regional GIS of Mashhad (in Persian). Research plan of Ferdowsi University of Mashhad, p. 159 (2006)

  37. See L., Openshaw S.: Applying soft computing approaches to river level forecasting. Hydrol. Sci. J. 44, 763–777 (1999)

    Article  Google Scholar 

  38. Jang, J.S.R.; Sun, C.T.; Mizutani, E.: Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence. Prentice-Hall, Englewood Cliffs, NJ (1997)

  39. Partal, T.: River flow forecasting using different artificial neural network algorithms and wavelet transform. Can. J. Civil Eng. 36(1), 26–38 (2009). doi:10.1139/l08-090

    Google Scholar 

  40. Christopoulou, E.B.; Skodras, A.N.; Georgakilas, A.A.: The “a trous” nvantelet transform versus clasical methods for the improvement of solar images. In: 14th International Conference on Digital Signal Processing, 2002. DSP 2002, pp. 885–888 (2002)

  41. Haykin, S.: Neural Networks, A Comprehensive Foundation, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ.; (1999)

  42. Madić M.J., Radovanović M.R.: Optimal selection of ANN training and architectural parameters using Taguchi method: A case study. FME Trans. 39(2), 79–86 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Vafakhah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moosavi, V., Vafakhah, M., Shirmohammadi, B. et al. Optimization of Wavelet-ANFIS and Wavelet-ANN Hybrid Models by Taguchi Method for Groundwater Level Forecasting. Arab J Sci Eng 39, 1785–1796 (2014). https://doi.org/10.1007/s13369-013-0762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0762-3

Keywords

Navigation