Skip to main content
Log in

Sb2O3 Nanowires as Anode Material for Sodium-Ion Battery

  • Research Article - Special Issue - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The anodic properties of antimony trioxide (Sb2O3) nanowires were investigated as electrode material for sodium-ion battery. Sb2O3 nanowires were prepared via a mild-condition, solvothermal route based on the hydrolysis of antimony trichloride (SbCl3) in alcohol aqueous solution. The uniform morphology and crystal phases of Sb2O3 nanowires are confirmed by scanning electronic microscopy, transmission electronic microscopy, and X-ray diffraction. The electrochemical performance of Sb2O3 nanowire anodes was studied and the material exhibits a high reversible capacity of 230 mAh/g which is attributed to the reversible complex conversion–alloying reactions between antimony trioxide and sodium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delmas, C.; Braconnier, J.J.; Fouassier, C.; Hagenmuller, P.: Electrochemical intercalation of sodium in Na x CoO2 bronzes. Solid State Ion. 3–4, 65–169 (1981)

  2. Molenda, J.; Delmas, C.; Hagenmuller, P.: Electronic and electrochemical properties of Na x CoO2-y cathode. Solid State Ion. 9–10, 431–435 (1983)

  3. Nagelberg A.S., Worrell W.L.: Thermodynamic study of sodium-intercalated TaS2 and TiS2. J. Solid State Chem. 29(3), 345–354 (1979)

    Article  Google Scholar 

  4. Shacklette L.W., Jow T.R., Townsend L.: Rechargeable electrodes from sodium cobalt bronzes. J. Electrochem. Soc. 135(11), 2669–2674 (1988)

    Article  Google Scholar 

  5. Tarascon, J.M.; Hull, G.W.: Sodium intercalation into the layer oxides NaxMo2O4. Solid State Ion. 22(1), 85–96 (1986)

  6. Whittingham M.S.: Chemistry of intercalation compounds–metal guests in chalcogenide hosts. Progr. Solid State Chem. 12(1), 41–99 (1978)

    Article  Google Scholar 

  7. Jacobson, M.Z.; Delucchi, M.A.: Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 39(3), 1154–1169 (2011)

  8. Armand, M.; Tarascon, J.M.: Building better batteries. Nature 451(7179), 652–657 (2008)

  9. Goodenough J.B., Kim Y.: Challenges for rechargeable batteries. J. Power Sour. 196(16), 6688–6694 (2011)

    Article  Google Scholar 

  10. Slater, M.D.; Kim, D.; Lee, E.; Johnson, C.S.: Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013)

  11. Ellis B.L., Nazar L.F.: Sodium and sodium-ion energy storage batteries. Curr Opin. Solid State Mater. Sci. 16(4), 168–177 (2012)

    Article  Google Scholar 

  12. Ponrouch, A.; Goñi, A.R.; Palacín, M.R.: High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem. Commun. 27(0), 85–88 (2013)

  13. Stevens, D.A.; Dahn, J.R.: The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148(8), A803–A811 (2001)

  14. Alcantara, R.; Jaraba, M.; Lavela, P.; Tirado, J.L.: NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 14(7), 2847–2848 (2002)

  15. Sun, Q.; Ren, Q.Q.; Li, H.; Fu, Z.W.: High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. Electrochem. Commun. 13(12), 1462–1464 (2011)

  16. Kim, J.S.; Ahn, H.J.; Ryu, H.S.; Kim, D.J.; Cho, G.B.; Kim, K.W.; Nam, T.H.; Ahn, J.H.: The discharge properties of Na/Ni3S2 cell at ambient temperature. J. Power Sour. 178(2), 852–856 (2008)

  17. Kim, T.B.; Choi, J.W.; Ryu, H.S.; Cho, G.B.; Kim, K.W.; Ahn, J.H.; Cho, K.K.; Ahn, H.J.: Electrochemical properties of sodium/pyrite battery at room temperature. J. Power Sour. 174(2), 1275–1278 (2007)

  18. Reddy, M.V.; Subba Rao, G.V.; Chowdari, B.V.R.: Li-storage and cycling properties of Sn–Sb-mixed oxides, (M1/2Sb1/2Sn)O4, M = In, Fe. J. Solid State Electrochem. 17(6), 1765–1773 (2013)

  19. Chen X.Y., Wang X., An C.H., Liu J.W., Qian Y.T.: Synthesis of Sb2O3 nanorods under hydrothermal conditions. Mater. Res. Bull. 40(3), 469–474 (2005)

    Article  Google Scholar 

  20. Liu, L.; Hu, Z.L.; Cui, Y.M.; Li, B.; Zhou, X.F.: A facile route to the fabrication of morphology-controlled Sb2O3 nanostructures. Solid State Sci. 12(5), 882–886 (2010)

  21. Tang J., WangY. Jiao Z., Wu M.H.: Self-assembly nanostructures of one-dimensional antimony oxide and oxychloride. Mater. Lett. 63(17), 1481–1484 (2009)

    Article  Google Scholar 

  22. Darwiche A., Marino C., Sougrati M.T., Fraisse B., Lorenzo L.S., Monconduit L.: Better cycling performances of bulk SB in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc. 134(51), 20805–20811 (2012)

    Article  Google Scholar 

  23. Sánchez, L.; Tirado, J.L.; Peárez Vicente, C.; Jumas, J.C.: Electrochemical lithium and sodium intercalation into TaFe1.25Te3. J. Solid State Electrochem. 2(5), 328–333 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Liu, H. & Wang, G. Sb2O3 Nanowires as Anode Material for Sodium-Ion Battery. Arab J Sci Eng 39, 6589–6593 (2014). https://doi.org/10.1007/s13369-014-1194-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1194-4

Keywords

Navigation