Skip to main content
Log in

Microstructural Evolution and Strengthening of AM90 Magnesium Alloy Processed by ECAP

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Equal-channel angular pressing (ECAP) was applied on AM90 magnesium alloy using processing route \(\hbox {B}_{\mathrm {C}}\) at \(275\,^\circ \)C up to four passes. Microstructural evolution and the corresponding modification in mechanical properties (strength, elongation and hardness) corresponding to the number of ECAP passes were evaluated using X-ray diffraction (XRD), electron backscatter diffraction, scanning electron microscopy, transmission electron microscopy, tensile test and microhardness test. Shear deformation was found to refine the microstructure by breaking it into smaller grains formed by dislocation reconstruction. Tensile strength and hardness were found to increase by \(\sim \)128 and 23%, respectively, for ECAP-processed 2-pass sample in comparison with that of the homogenized condition. After two passes, tensile strength and hardness started decreasing even though the grain size was still decreasing, which was found to be associated with texture modification during ECAP processing as observed by XRD analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, H.; Yu, A.; Li, N.; Allison, J.E.: Potential magnesium alloys for high temperature die cast automotive applications: a review. Mater. Manuf. Process. 18(5), 687–717 (2003)

    Article  Google Scholar 

  2. Kulekci, M.K.: Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39(9), 851–865 (2008)

    Article  Google Scholar 

  3. Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M.: Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrog. Energy 32(9), 1121–1140 (2007)

    Article  Google Scholar 

  4. Lowe, T.C.; Valiev, R.Z.: The use of severe plastic deformation techniques in grain refinement. JOM 56(10), 64–68 (2004)

    Article  Google Scholar 

  5. Estrin, Y.; Vinogradov, A.: Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 61(3), 782–817 (2013)

    Article  Google Scholar 

  6. Ranaware, P.G.; Rathod, M.J.: Combined effect of shot peening, subcritical austenitic nitriding and cryo-treatment on surface modification of AISI 4140 steel. Mater. Manuf. Process. 32, 349–354 (2016). doi:10.1080/10426914.2016.1221112

    Article  Google Scholar 

  7. Sekhar, K.C.; Kashyap, B.P.; Sangal, S.: A process of notch wavy rolling for strengthening metal sheets. Mater. Manuf. Process. 31(6), 781–786 (2016)

    Article  Google Scholar 

  8. Shin, D.H.; Park, J.J.; Kim, Y.S.; Park, K.T.: Constrained groove pressing and its application to grain refinement of aluminum. Mater. Sci. Eng. A 328(1), 98–103 (2002)

    Article  Google Scholar 

  9. Yadav, P.C.; Sinhal, A.; Sahu, S.; Roy, A.; Shekhar, S.: Microstructural inhomogeneity in constrained groove pressed Cu–Zn alloy sheet. J. Mater. Eng. Perform. 25(7), 2604–2614 (2016)

    Article  Google Scholar 

  10. Furukawa, M.; Horita, Z.; Nemoto, M.; Langdon, T.G.: Review: processing of metals by equal-channel angular pressing. J. Mater. Sci. 36(12), 2835–2843 (2001)

    Article  Google Scholar 

  11. Valiev, R.Z.; Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51(7), 881–981 (2006)

    Article  Google Scholar 

  12. Surendarnath, S.; Sankaranarayanasamy, K.; Ravisankar, B.: A comparative study of commercially pure aluminum processed by ECAP using conventional and new die. Mater. Manuf. Process. 29(10), 1172–1178 (2014)

    Article  Google Scholar 

  13. Zhu, Y.T.; Lowe, T.C.; Jiang, H.; Huang, J.: Method for producing ultrafine-grained materials using repetitive corrugation and straightening. U.S. Patent No. 6197129 B1, (2001)

  14. Sunil, B.R.: Repetitive corrugation and straightening of sheet metals. Mater. Manuf. Process. 30(10), 1262–1271 (2015)

    Article  Google Scholar 

  15. Zhilyaev, A.P.; Langdon, T.G.: Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater. Sci. 53(6), 893–979 (2008)

    Article  Google Scholar 

  16. Choi, I.C.; Lee, D.H.; Ahn, B.; Durst, K.; Kawasaki, M.; Langdon, T.G.; Jang, J.I.: Enhancement of strain-rate sensitivity and shear yield strength of a magnesium alloy processed by high-pressure torsion. Scr. Mater. 94, 44–47 (2015)

    Article  Google Scholar 

  17. Huot, J.: High-pressure torsion. In: Enhancing Hydrogen Storage Properties of Metal Hydrides: Enhancement by Mechanical Deformations, p. 11. Springer, Switzerland (2016)

  18. Jahedi, M.; Paydar, M.H.: Study on the feasibility of the torsion extrusion (TE) process as a severe plastic deformation method for consolidation of Al powder. Mater. Sci. Eng. A 527(20), 5273–5279 (2010)

    Article  Google Scholar 

  19. Khosravifard, A.; Jahedi, M.; Yaghtin, A.H.: Three dimensional finite element study on torsion extrusion processing of 1050 aluminum alloy. Trans. Nonferrous Met. Soc. China 22(11), 2771–2776 (2012)

    Article  Google Scholar 

  20. Ivanisenko, Y.; Kulagin, R.; Fedorov, V.; Mazilkin, A.; Scherer, T.; Baretzky, B.; Hahn, H.: High pressure torsion extrusion as a new severe plastic deformation process. Mater. Sci. Eng. A 664, 247–256 (2016)

    Article  Google Scholar 

  21. Huang, H.; Tang, Z.; Tian, Y.; Jia, G.; Niu, J.; Zhang, H.; Pei, J.; Yuan, G.; Ding, W.: Effects of cyclic extrusion and compression parameters on microstructure and mechanical properties of Mg–1.50Zn–0.25Gd alloy. Mater. Des. 86, 788–796 (2015)

    Article  Google Scholar 

  22. Tian, Y.; Huang, H.; Yuan, G.; Ding, W.: Microstructure evolution and mechanical properties of quasicrystal-reinforced Mg–Zn–Gd alloy processed by cyclic extrusion and compression. J. Alloys Compd. 626, 42–48 (2015)

    Article  Google Scholar 

  23. Jung, K.H.; Kim, Y.B.; Lee, G.A.; Lee, S.; Kim, E.Z.; Choi, D.S.: Formability of ZK60A magnesium alloy determined by compression and backward extrusion. Mater. Manuf. Process. 29(2), 115–120 (2014)

    Article  Google Scholar 

  24. Faraji, G.; Jafarzadeh, H.: Accumulative torsion back (ATB) processing as a new plastic deformation technique. Mater. Manuf. Process. 27(5), 507–511 (2012)

    Article  Google Scholar 

  25. Nakamura, K.; Neishi, K.; Kaneko, K.; Nakagaki, M.; Horita, Z.: Development of severe torsion straining process for rapid continuous grain refinement. Mater. Trans. 45(12), 3338–3342 (2004)

    Article  Google Scholar 

  26. Liao, W.; Ye, B.; Zhang, L.; Zhou, H.; Guo, W.; Wang, Q.; Li, W.: Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging. Mater. Sci. Eng. A 642, 49–56 (2015)

    Article  Google Scholar 

  27. Guo, W.; Wang, Q.D.; Li, W.Z.; Zhosu, H.; Zhang, L.; Liao, W.J.: Enhanced microstructure homogeneity and mechanical properties of AZ91-SiC nanocomposites by cyclic closed-die forging. J. Compos. Mater. 51, 681–686 (2016). doi:10.1177/0021998316651126

    Article  Google Scholar 

  28. Saito, Y.; Utsunomiya, H.; Tsuji, N.; Sakai, T.: Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta Mater. 47(2), 579–583 (1999)

    Article  Google Scholar 

  29. Raei, M.; Toroghinejad, M.R.; Jamaati, R.: Nano/Ultrafine Structured AA1100 by ARB Process. Mater. Manuf. Process. 26(11), 1352–1356 (2011)

    Article  Google Scholar 

  30. Yu, H.L.; Lu, C.; Tieu, A.K.; Kong, C.: Fabrication of nanostructured aluminum sheets using four-layer accumulative roll bonding. Mater. Manuf. Process. 29(4), 448–453 (2014)

    Article  Google Scholar 

  31. Eto, M.; Sasaki, T.; Fukushima, S.; Shibahara, T.; Miyata, K.; Wakita, M.: Development of super short interval multi-pass rolling technology for ultra fine-grained hot strip. Rev. Met. Paris 103(7–8), 319–325 (2006)

    Article  Google Scholar 

  32. Etou, M.; Fukushima, S.; Sasaki, T.; Haraguchi, Y.; Miyata, K.; Wakita, M.; Tomida, T.; Imai, N.; Yoshida, M.; Okada, Y.: Super short interval multi-pass rolling process for ultrafine-grained hot strip. ISIJ Int. 48(8), 1142–1147 (2008)

    Article  Google Scholar 

  33. Fu, M.W.; Yong, M.S.; Pei, Q.X.; Hng, H.H.: Deformation behavior study of multi-pass ECAE process for fabrication of ultrafine or nanostructured bulk materials. Mater. Manuf. Process. 21(5), 507–512 (2006)

    Article  Google Scholar 

  34. Valder, J.; Rijesh, M.; Surendranathan, A.O.: Forming of tubular commercial purity aluminum by ECAP. Mater. Manuf. Process. 27(9), 986–989 (2012)

    Article  Google Scholar 

  35. Nieh, T.; Wadsworth, J.: Hall–Petch relation in nanocrystalline solids. Scr. Metll. et Mater. 25(4), 955–958 (1991)

    Article  Google Scholar 

  36. Yoon, E.Y.; Yoo, J.H.; Yoon, S.C.; Kim, Y.K.; Baik, S.C.; Kim, H.S.: Analyses of route Bc equal channel angular pressing and post-equal channel angular pressing behavior by the finite element method. J. Mater. Sci. 45(17), 4682–4688 (2010)

    Article  Google Scholar 

  37. Avedesian, M.M.; Baker, H.: ASM Specialty Handbook: Magnesium and Magnesium Alloys. ASM International, Ohio (1999)

    Google Scholar 

  38. Watanabe, K.; Matsuda, K.; Gonoji, T.; Kawabata, T.; Sakakibara, K.; Sanpei, Y.; Saikawa, S.; Ikeno, S.: Effect of casting method and Al contents on microstructure in AM-type magnesium alloys. Mater. Sci. Forum 654, 663–666 (2010)

    Article  Google Scholar 

  39. Namdar, M.; Jahromi, S.A.J.: Influence of ECAP on the fatigue behavior of age-hardenable 2xxx aluminum alloy. Int. J. Miner. Metall. Mater. 22(3), 285–291 (2015)

    Article  Google Scholar 

  40. Li, Z.; Zhou, S.J.; Huang, N.: Effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg. Int. J. Miner. Metall. Mater. 22(6), 639–647 (2015)

    Article  Google Scholar 

  41. Liu, T.; Zhang, W.; Wu, S.D.; Jiang, C.B.; Li, S.X.; Xu, Y.B.: Mechanical properties of a two-phase alloy Mg–8%Li–1% Al processed by equal channel angular pressing. Mater. Sci. Eng. A 360(1–2), 345–349 (2003)

    Article  Google Scholar 

  42. Jahadi, R.; Sedighi, M.; Jahed, H.: ECAP effect on the micro-structure and mechanical properties of AM30 magnesium alloy. Mater. Sci. Eng. A 593, 178–184 (2014)

    Article  Google Scholar 

  43. Iwahashi, Y.; Wang, J.; Horita, Z.; Nemoto, M.; Langdon, T.G.: Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 35(2), 143–146 (1996)

    Article  Google Scholar 

  44. Vaid, A.; Mittal, K.; Sahu, S.; Shekhar, S.: Controlled evolution of coincidence site lattice related grain boundaries. Trans. Indian Inst. Met. 69(9), 1745–1753 (2016)

    Article  Google Scholar 

  45. Semiatin, S.L.; Jonas, J.J.: Formability and Workability of Metals: Plastic Instability and Flow Localization. American Society for Metals p. 299 (1984)

  46. Feng, X.M.; Ai, T.T.: Microstructure evolution and mechanical behavior of AZ31 Mg alloy processed by equal-channel angular pressing. Trans. Nonferrous Met. Soc. China 19(2), 293–298 (2009)

    Article  MathSciNet  Google Scholar 

  47. Lin, H.K.; Huang, J.C.; Langdon, T.G.: Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP. Mater. Sci. Eng. A 402(1), 250–257 (2005)

    Article  Google Scholar 

  48. Jafarian, H.; Livar, J.H.; Razavi, S.H.: Microstructure evolution and mechanical properties in ultrafine grained Al/TiC composite fabricated by accumulative roll bonding. Compos. B 77, 84–92 (2015)

    Article  Google Scholar 

  49. Chino, Y.; Kimura, K.; Mabuchi, M.: Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy. Mater. Sci. Eng. A 486, 481–488 (2008)

    Article  Google Scholar 

  50. Austin, A.E.; Richard, N.A.: Grain-boundary diffusion. J. Appl. Phys. 32(8), 1462–1471 (1961)

    Article  Google Scholar 

  51. Zhu, S.Q.; Yan, H.G.; Chen, J.H.; Wu, Y.Z.; Liu, J.Z.; Tian, J.: Effect of twinning and dynamic recrystallization on the high strain rate rolling process. Scr. Mater. 63(10), 985–988 (2010)

    Article  Google Scholar 

  52. Koike, J.; Kobayashi, T.; Mukai, T.; Watanabe, H.; Suzuki, M.; Maruyama, K.; Higashi, K.: The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51(7), 2055–2065 (2003)

    Article  Google Scholar 

  53. Mukai, T.; Yamanoi, M.; Watanabe, H.; Higashi, K.: Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr. Mater. 45, 89–94 (2001)

    Article  Google Scholar 

  54. Hilpert, M.; Stycznki, A.; Kiese, J.; Wanger, L.: Magnesium Alloys and Their Application. Werkstoff-informations Gesellshaft, Hamburg (1998)

    Google Scholar 

  55. Akbaripanah, F.; Fereshteh-Saniee, F.; Mahmudi, R.; Kim, H.K.: Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing. Mater. Des. 43, 31–39 (2013)

    Article  Google Scholar 

  56. Kim, H.K.; Kim, W.J.: Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation. Mater. Sci. Eng. A 385(1), 300–308 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Shashank Shekhar, Assistant Professor, IIT Kanpur, India, for his support in providing the laboratory facilities which helped us to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Gopi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopi, K.R., Shivananda Nayaka, H. & Sahu, S. Microstructural Evolution and Strengthening of AM90 Magnesium Alloy Processed by ECAP. Arab J Sci Eng 42, 4635–4647 (2017). https://doi.org/10.1007/s13369-017-2574-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2574-3

Keywords

Navigation