Skip to main content
Log in

Fractional Order Set-point Weighted PID Controller for pH Neutralization Process Using Accelerated PSO Algorithm

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Control of pH processes is highly challenging due to high nonlinearity and sensitivity around the equilibrium point. PID controllers being simple and the most widely used perform poorly with changing set-point and are limited to certain operating regions. Thus, they are inadequate for such applications without upgrading. In this paper, a fractional order set-point weighted PID (\(\mathrm {SWPI^{\lambda }D^{\mu }}\)) controller is designed for pH neutralization process. The objective is to achieve adequate set-point tracking and effective load regulation through smooth control action. The controller parameters are tuned using accelerated particle swarm optimization which uses only global best position to achieve faster convergence. Simulation results show that for both standard and industrial configurations of the proposed approach, better performance in terms of set-point tracking, disturbance rejection and sensitivity to model parameter variation is achieved compared to PID, fractional order PID (\(\mathrm {PI^{\lambda }D^{\mu }}\)) and SWPI-D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kastyuchik, A.; Karam, A.; Aïder, M.: Effectiveness of alkaline amendments in acid mine drainage remediation. Environ. Technol. Innov. 6, 49–59 (2016). doi:10.1016/j.eti.2016.06.001

    Article  Google Scholar 

  2. Allard, B.; Bäckström, M.; Karlsson, S.; Grawunder, A.: Neutralisation of an acidic pit lake by alkaline waste products. Environ. Sci. Pollut. Res. 21(11), 6930–6938 (2014). doi:10.1007/s11356-013-2026-x

    Article  Google Scholar 

  3. Hermansson, A.; Syafiie, S.: Model predictive control of pH neutralization processes: a review. Control Eng. Pract. 45, 98–109 (2015). doi:10.1016/j.conengprac.2015.09.005

    Article  Google Scholar 

  4. Bello, O.; Hamam, Y.; Djouani, K.: Nonlinear model predictive control of a coagulation chemical dosing unit for water treatment plants. IFAC Proc. Vol. 47(3), 370–376 (2014). doi:10.3182/20140824-6-ZA-1003.01400

    Article  Google Scholar 

  5. Hazourli, S.; Ziati, M.; Benredjem, Z.; Delimi, R.; Boudiba, L.: Analysis of wastewater loaded with paint before and after treatment of coagulation–flocculation. Arab. J. Sci. Eng. 37(4), 897–903 (2012). doi:10.1007/s13369-012-0219-0

    Article  Google Scholar 

  6. Liu, Y.; Chen, W.; Wang, H.; Gao, Z.; Li, P.: Adaptive control of nonlinear time-varying processes using selective recursive kernel learning method. Ind. Eng. Chem. Res. 50(5), 2773–2780 (2011). doi:10.1021/ie100634k

    Article  Google Scholar 

  7. Liu, Y.; Gao, Y.; Gao, Z.; Wang, H.; Li, P.: Simple nonlinear predictive control strategy for chemical processes using sparse kernel learning with polynomial form. Ind. Eng. Chem. Res. 49(17), 8209–8218 (2010). doi:10.1021/ie901548u

    Article  Google Scholar 

  8. Qiu, J.; Wang, T.; Yin, S.; Gao, H.: Data-based optimal control for networked double-layer industrial processes. IEEE Trans. Ind. Electron. 64(5), 4179–4186 (2017). doi:10.1109/TIE.2016.2608902

    Article  Google Scholar 

  9. Qiu, J.; Ding, S.X.; Gao, H.; Yin, S.: Fuzzy-model-based reliable static output feedback \({H_{\infty }}\) control of nonlinear hyperbolic PDE systems. IEEE Trans. Fuzzy Syst. 24(2), 388–400 (2016). doi:10.1109/TFUZZ.2015.2457934

    Article  Google Scholar 

  10. Ibrahim, R.: Practical modelling and control implementation studies on a pH neutralization process pilot plant. PhD thesis, Ph.D. dissertation, University of Glasgow (2008)

  11. Adeva-Andany, M.M.; Carneiro-Freire, N.; Donapetry-García, C.; Rañal-Muíño, E.; López-Pereiro, Y.: The importance of the ionic product for water to understand the physiology of the acid-base balance in humans. Biomed. Res. Int. 2014, (2014). doi:10.1155/2014/695281

  12. Heredia-Molinero, M.; Sanchez-Prieto, J.; Briongos, J.; Palancar, M.: Feedback PID-like fuzzy controller for pH regulatory control near the equivalence point. J. Process Control 24(7), 1023–1037 (2014). doi:10.1016/j.jprocont.2014.05.006

    Article  Google Scholar 

  13. Dolatabadi, M.H.; Monfared, M.N.; Fakharian, A.: Robust H-infinity control for the pH neutralization process based on fuzzy models. In: Fuzzy Systems (IFSC), 2013 13th Iranian Conference on, IEEE, pp. 1–6 (2013). doi:10.1109/IFSC.2013.6675681

  14. Chen, J.; Liu, Z.; Peng, Y.; Guo, Q.: A New Control Method in pH Neutralization Process. Springer, Berlin (2013). doi:10.1007/978-3-642-38524-7_56

    Book  Google Scholar 

  15. Brown, A.; Zhang, J.: (2014) Active disturbance rejection control of a neutralisation process. In: Ji Jaromr Kleme P.S.V.; Liew P.Y. (eds.) 24th European Symposium on Computer Aided Process Engineering, Computer Aided Chemical Engineering, vol. 33, pp. 739 – 744. Elsevier. doi:10.1016/B978-0-444-63456-6.50124-1

  16. Zhiyun, Z.; Meng, Y.; Zhizhen, W.; Xinghong, L.; Yuqing, G.; ZHANG, F.; Ning, G.: Nonlinear model algorithmic control of a pH neutralization process. Chin. J. Chem. Eng. 21(4), 395–400 (2013). doi:10.1016/S1004-9541(13)60479-6

    Article  Google Scholar 

  17. Zou, H.; Li, H.: Improved PI–PD control design using predictive functional optimization for temperature model of a fluidized catalytic cracking unit. ISA Trans. 67, 215–221 (2017). doi:10.1016/j.isatra.2016.11.010

    Article  Google Scholar 

  18. Vilanova, R.; Visioli, A.: PID Control in the Third Millennium: Lessons Learned and New Approaches. Springer, London (2012). doi:10.1007/978-1-4471-2425-2

    Book  Google Scholar 

  19. Alfaro, V.M.; Vilanova, R.: Model-reference robust tuning of 2DoF PI controllers for first-and second-order plus dead-time controlled processes. J. Process Control 22(2), 359–374 (2012). doi:10.1016/j.jprocont.2012.01.001

    Article  Google Scholar 

  20. Visioli, A.: Set-point Weighting. Practical PID Control, pp. 61–91 (2006). doi:10.1007/1-84628-586-0

  21. Rajinikanth, V.; Latha, K.: Setpoint weighted PID controller tuning for unstable system using heuristic algorithm. Arch. Control Sci. 22(4), 481–505 (2012). doi:10.2478/v10170-011-0037-8

    MathSciNet  MATH  Google Scholar 

  22. Mudi, R.K.; Dey, C.: Performance improvement of PI controllers through dynamic set-point weighting. ISA Trans. 50(2), 220–230 (2011). doi:10.1016/j.isatra.2010.11.006

    Article  Google Scholar 

  23. Åström, K.J.; Hägglund, T.: Advanced PID Control. ISA-The Instrumentation, Systems and Automation Society, Pittsburgh (2006)

    Google Scholar 

  24. Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V.: Fractional-order Systems and Controls: Fundamentals and Applications. Springer, New York (2010). doi:10.1007/978-1-84996-335-0

    Book  MATH  Google Scholar 

  25. Sutha, S.; Lakshmi, P.; Sankaranarayanan, S.: Fractional-order sliding mode controller design for a modified quadruple tank process via multi-level switching. Comput. Electr. Eng. 45, 10–21 (2015). doi:10.1016/j.compeleceng.2015.04.012

    Article  Google Scholar 

  26. Liu, L.; Pan, F.; Xue, D.: Variable-order fuzzy fractional PID controller. ISA Trans. 55, 227–233 (2015). doi:10.1016/j.isatra.2014.09.012

    Article  Google Scholar 

  27. Hajiloo, A.; Nariman-Zadeh, N.; Moeini, A.: Pareto optimal robust design of fractional-order PID controllers for systems with probabilistic uncertainties. Mechatronics 22(6), 788–801 (2012). doi:10.1016/j.mechatronics.2012.04.003

    Article  Google Scholar 

  28. Padula, F.; Vilanova, R.; Visioli, A.: H\(\infty \) optimization-based fractional-order PID controllers design. Int. J. Robust Nonlinear Control 24(17), 3009–3026 (2014). doi:10.1002/rnc.3041

    Article  MathSciNet  MATH  Google Scholar 

  29. Shah, P.; Agashe, S.: Review of fractional PID controller. Mechatronics 38, 29–41 (2016). doi:10.1016/j.mechatronics.2016.06.005

    Article  Google Scholar 

  30. Kumar, N.; Tyagi, B.; Kumar, V.: Deregulated multiarea AGC scheme Using BBBC-FOPID controller. Arab. J. Sci. Eng. 1–9. doi:10.1007/s13369-016-2293-1 (2016)

  31. Xue, D.; Chen, Y.; Atherton, D.P.: Linear Feedback Control: Analysis and Design with MATLAB. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  32. Rasouli, H.; Fatehi, A.: Design of set-point weighting \(PI^{\lambda }+D^{\mu }\) controller for vertical magnetic flux controller in Damavand tokamak. Rev. Sci. Instrum. 85(12), (2014). doi:10.1063/1.4904737

  33. Azarmi, R.; Tavakoli-Kakhki, M.; Sedigh, A.K.; Fatehi, A.: Analytical design of fractional order PID controllers based on the fractional set-point weighted structure: case study in twin rotor helicopter. Mechatronics 31, 222–233 (2015). doi:10.1016/j.mechatronics.2015.08.008

    Article  Google Scholar 

  34. Padula, F.; Visioli, A.: Set-point weight tuning rules for fractional-order PID controllers. Asian J. Control 15(3), 678–690 (2013). doi:10.1002/asjc.634

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, Hoboken (2010). doi:10.1002/9780470640425

    Book  Google Scholar 

  36. Yang, X.S.; Deb, S.; Fong, S.: Accelerated particle swarm optimization and support vector machine for business optimization and applications. In: International Conference on Networked Digital Technologies, pp. 53–66. Springer (2011). doi:10.1007/978-3-642-22185-9_6

  37. Gandomi, A.H.; Yun, G.J.; Yang, X.S.; Talatahari, S.: Chaos-enhanced accelerated particle swarm optimization. Commun. Nonlinear Sci. Numer. Simul. 18(2), 327–340 (2013). doi:10.1016/j.cnsns.2012.07.017

    Article  MathSciNet  MATH  Google Scholar 

  38. Guedria, N.B.: Improved accelerated PSO algorithm for mechanical engineering optimization problems. Appl. Soft Comput. 40, 455–467 (2016). doi:10.1016/j.asoc.2015.10.048

  39. Sahib, M.A.; Ahmed, B.S.: A new multiobjective performance criterion used in PID tuning optimization algorithms. J. Adv. Res. 7(1), 125–134 (2016). doi:10.1016/j.jare.2015.03.004

    Article  Google Scholar 

  40. De Oliveira, E.C.; Tenreiro Machado, J.A.: A review of definitions for fractional derivatives and integral. Math. Probl. Eng. (2014). doi:10.1155/2014/238459

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore Bingi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bingi, K., Ibrahim, R., Karsiti, M.N. et al. Fractional Order Set-point Weighted PID Controller for pH Neutralization Process Using Accelerated PSO Algorithm. Arab J Sci Eng 43, 2687–2701 (2018). https://doi.org/10.1007/s13369-017-2740-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2740-7

Keywords

Navigation