Skip to main content
Log in

Low-Power High-Speed Analog Multiplier/Divider Based on a New Current Squarer Circuit

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a CMOS ultra-low-power, high-speed four-quadrant current multiplier/divider circuit is presented. Based on square-difference approach, the proposed circuit is using a new current squarer with MOS transistors operating in weak inversion region. The translinear loops are the basic building blocks in realization of the current-mode two-quadrant squarer and four-quadrant multiplier/divider circuits. The proposed designs have been simulated using HSPICE in 0.18 \(\upmu \hbox {m}\) TSMC CMOS (level-49 parameter) process. Post-layout simulation results with 0.8 V power supply show the total power dissipation of 770 nW, the total harmonic distortion of 0.67% (at 100 kHz), the maximum linearity error of 2%, and the − 3 dB bandwidth of 34.1 MHz. Monte Carlo analysis is also performed to ensure the stability and robustness of the circuit’s performance in the presence of the PVT (process, voltage, and temperature) variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saxena, N.; Clark, J.J.: A four-quadrant CMOS analog multiplier for analog neural networks. IEEE J. Solid-State Circuits 29(6), 746–749 (1994)

    Article  Google Scholar 

  2. Liu, W.; Liu, S.L.; Wei, S.-K.: CMOS current-mode divider and its applications. IEEE Trans. Circuits Syst. II 52(3), 145–148 (2005)

    Article  Google Scholar 

  3. Al-Absi, M.A.: Low voltage and low power current-mode divider and \(1/X\) circuit using MOS transistor in subthreshold. Arab. J. Sci. Eng. 38(9), 2411–2414 (2013)

    Article  Google Scholar 

  4. Maryan, M.M.; Azhari, S.J.: A MOS translinear cell-based configurable block for current-mode analog signal processing. Analog Integr. Circuits Signal Process. 92(1), 1–13 (2017)

    Article  Google Scholar 

  5. Song, H.-J.; Kim, C.H.-K.: An MOS four-quadrant analog multiplier using simple two-input squaring circuits with source followers. IEEE J. Solid-State Circuits 25(3), 841–848 (1990)

    Article  Google Scholar 

  6. Han, G.; Sánchez-Sinencio, E.: CMOS transconductance multipliers: a tutorial. IEEE Trans. Circuits Syst. II 45(12), 1550–1563 (1998)

    Article  Google Scholar 

  7. Toumazou, C.; Lidgey, F.J.; Haigh, D.G.: Analogue IC Design: The Current-Mode Approach. IEE Press, London (1990)

    Google Scholar 

  8. Chang, C.C.; Liu, S.-L.: Weak inversion four-quadrant multiplier and two-quadrant divider. Electron. Lett. 34(22), 2079–2080 (1998)

    Article  Google Scholar 

  9. Gravati, M.; Valle, M.; Ferri, G.; Guerrini, N.; Reyes, L.: A novel current-mode very low power analog CMOS four quadrant multiplier. In: Proceedings of ESSCIRC, pp. 495–498 (2005)

  10. Mahmoudi, A.; Khoei, A.; Hadidi, Kh.: A novel current-mode micropower four quadrant CMOS analog multiplier/divider. In: IEEE Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 321–324 (2007)

  11. Tanno, K.; Sugahara, Y.; Tamura, H.: High-linear four-quadrant multiplier based on MOS weak-inversion region translinear principle with adaptive bias technique. TENCON 2011, 680–684 (2011)

    Google Scholar 

  12. Wu, R.; Xing, J.: MOS translinear principle based analog four-quadrant multiplier. In: Anti-Counterfeiting Security and Identification (ASID), pp. 1–4 (2012)

  13. Al-Absi, M.A.; Hussein, A.; Abuelma’atti, M.T.: A low voltage and low power current-mode analog computational circuit. Circuits Syst. Signal Process. 32(1), 321–331 (2013)

    Article  MathSciNet  Google Scholar 

  14. Panigrahi, A.; Paul, P.K.: A novel bulk-input low voltage and low power four quadrant analog multiplier in weak inversion. Analog Integr. Circuits Signal Process. 75(2), 237–243 (2013)

    Article  Google Scholar 

  15. Demartinos, Ch; Psychalinosand, C.; Khateb, F.: Ultra-low voltage CMOS current-mode four-quadrant multiplier. Int. J. Electron. Lett. 2(4), 224–233 (2014)

    Article  Google Scholar 

  16. Al-Tamimi, K.; Thiyagarajan, P.; El-Sankary, K.: Continuous-time four-quadrant modulator with inherent PVT cancellation. Electron. Lett. 52(10), 807–808 (2016)

    Article  Google Scholar 

  17. Al-Tamimi, K.M.; EL-Sanakary, K.: Body-driven log/antilog PVT compensated analog computational block. Analog Integr. Circuits Signal Process. 90(3), 693–700 (2017)

    Article  Google Scholar 

  18. Lopez-Martin, A.J.; Carlosena, A.: Current-mode multiplier/divider circuits based on the MOS translinear principle. Analog Integr. Circuits Signal Process. 28(3), 265–278 (2001)

    Article  Google Scholar 

  19. Naderi, A.; Khoei, A.; Hadidi, Kh; Ghasemzadeh, H.: A new high speed and low power four-quadrant CMOS analog multiplier in current mode. Int. J. Electron. Commun. (AEÜ) 63(9), 769–775 (2009)

    Article  Google Scholar 

  20. Popa, C.: Improved accuracy current-mode multiplier circuits with applications in analog signal processing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst 22(2), 443–447 (2014)

    Article  Google Scholar 

  21. Al-Absi, M.A.; As-Sabban, I.A.: A new highly accurate CMOS current-mode four-quadrant multiplier. Arab. J. Sci. Eng. 40(2), 551–558 (2015)

    Article  Google Scholar 

  22. Maryan, M M.; Azhari, S J.; Hajipur, M R.: A simple low-power high-speed CMOS four-quadrant current multiplier. In: 24th Iranian Conference on Electrical Engineering (ICEE), pp. 1471–1474 (2016)

  23. Serrano-Gotarredona, T.; Linares-Barranco, B.; Andreou, A.G.: A general translinear principle for subthreshold MOS transistors. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46(5), 607–616 (1999)

    Article  Google Scholar 

  24. Seevinck, E.; Wiegerink, R.J.: Generalized translinear circuit principle. IEEE J. Solid-State Circuits 26(8), 1098–1102 (1991)

    Article  Google Scholar 

  25. Minaei, Sh; Yuce, E.: New squarer circuits and a current-mode full-wave rectifier topology suitable for integration. Radioengineering 19(4), 657–661 (2010)

    Google Scholar 

  26. Farshidi, E.; Ghanavati Nejad, T.: A new two-quadrant squarer/divider circuit for true RMS-to-DC converters in MOS technology. Measurement 45(4), 778–784 (2012)

    Article  Google Scholar 

  27. AL-Absi, M.A.; As-Sabban, I.A.: A CMOS current-mode squaring circuit free of error resulting from carrier mobility reduction. Analog Integr. Circuits Signal Process. 81(1), 21–28 (2014)

    Article  Google Scholar 

  28. Minaei, Sh; Psychalinos, C.: Two-quadrant fully integrable rms-to-dc converter for handling low-frequency signals. Int. J. Electron. Commun. (AEÜ) 69(12), 1897–1901 (2015)

    Article  Google Scholar 

  29. Razavi, B.: Design of Analog Integrated Circuits. McGraw Hill, New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Moradinezhad Maryan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maryan, M.M., Ghanaatian, A., Azhari, S.J. et al. Low-Power High-Speed Analog Multiplier/Divider Based on a New Current Squarer Circuit. Arab J Sci Eng 43, 2909–2918 (2018). https://doi.org/10.1007/s13369-017-2968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2968-2

Keywords

Navigation