Skip to main content
Log in

Visually Meaningful Multi-image Encryption Scheme

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Cipher images that are generated using encryption algorithms are noise-like image, which shows a clear indication for the presence of encrypted data. The noise-like image lures an adversary to carry out attacks. An approach for the generation of visually meaningful multiple-image encryption scheme is presented in this paper. Multiple cipher image data are embedded in the insignificant real data of a host image. Simulation results and security analyses express the high-quality performance of the proposed method. Comparison with Bao and Zhou (Inf Sci 324:197–207, 2015) and Kanso and Ghebleh (Opt Lasers Eng 90:196–208, 2017) visually meaningful image encryption schemes, the proposed scheme has got better ability to embed more images with least distortion to the visual perspective of the host image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, W.; Sun, K.; Zhu, C.: A fast image encryption algorithm based on chaotic map. Opt. Lasers Eng. 84, 26–36 (2016)

    Article  Google Scholar 

  2. Brindha, M.; Ammasai, G.N.G.: Image encryption scheme based on block based confusion and multiple levels of diffusion. IET Comput. Vis. 10(6), 593–602 (2016)

    Article  Google Scholar 

  3. Dai, Y.; Wang, H.; Wang, Y.: Chaotic medical image encryption algorithm based on bit-plane decomposition. Int. J. Pattern Recognit. Artif. Intell. 30(4), 1657001–1657015 (2016)

    Article  Google Scholar 

  4. Chong’s, D.: Asymmetric color image encryption scheme using discrete-time map and hash value. Optik 126, 574–2585 (2015)

    Google Scholar 

  5. Hongjun, L.; Abdurahman, K.: Asymmetric color image encryption scheme using 2D discrete-time map. Sig. Process. 113, 104–112 (2015)

    Article  Google Scholar 

  6. Devaraj, P.; Kavitha, C.: An image encryption scheme using dynamic S-boxes. Nonlinear Dyn. 86(2), 927–940 (2016)

    Article  MathSciNet  Google Scholar 

  7. Li, C.; Luo, G.; Qin, K.; Chunbao, L.: An image encryption scheme based on chaotic tent map. Nonlinear Dyn. 87, 127–133 (2016). https://doi.org/10.1007/s11071-016-3030-8

    Article  Google Scholar 

  8. Wang, X.; Teng, L.; Qin, X.: A novel colour image encryption algorithm based on chaos. Sig. Process. 92(4), 1101–1108 (2012)

    Article  MathSciNet  Google Scholar 

  9. Jianhua, L.; Hui, L.: Colour image encryption based on advanced encryption standard algorithm with two-dimensional chaotic map. IET Inf. Secur. 7(4), 265–270 (2013)

    Article  Google Scholar 

  10. Wadi, S.M.; Zainal, N.: High definition image encryption algorithm based on AES modification. Wireless Pers. Commun. 79, 811–829 (2014)

    Article  Google Scholar 

  11. Fahad, T.; Bin, M.: Chaotic and AES cryptosystem for satellite imagery. Telecommun. Syst. 52(2), 573–581 (2013)

    Google Scholar 

  12. Li, L.; Ahmed, A.A.L.; Xiamu, N.: Elliptic curve ElGamal based homomorphic image encryption scheme for sharing secret images. Sig. Process. 92, 1069–1078 (2012)

    Article  Google Scholar 

  13. Behnia, S.; Akhavan, A.; Akhshani, A.; Samsudin, A.: Image encryption based on the Jacobian elliptic maps. J. Syst. Softw. 86, 2419–2438 (2013)

    Article  Google Scholar 

  14. Ahmed, A.A.L.; Xiamu, N.: A hybrid chaotic system and cyclic elliptic curve for image encryption. Int. J. Electron. Commun. 67, 136–143 (2013)

    Article  Google Scholar 

  15. Tawalbeh, L.; Mowafi, M.; Aljoby, W.: Use of elliptic curve cryptography for multimedia encryption. IET Inf. Secur. 7, 67–74 (2012)

    Article  Google Scholar 

  16. Guesmi, R.; Farah, M.A.B.; Kachouri, A.; Samet, M.: A novel chaos-based image encryption using DNA sequence operation and Secure Hash Algorithm SHA-2. Nonlinear Dyn. 83(3), 1123–1136 (2016)

    Article  MathSciNet  Google Scholar 

  17. Manish, K.; Akhlad, I.; Pranjal, K.: A new RGB image encryption algorithm based on DNA encoding and elliptic curve Diffie–Hellman cryptography. Sig. Process. 125, 187–202 (2016)

    Article  Google Scholar 

  18. Lima, J.B.; Madeiro, F.; Sales, F.J.R.: Encryption of medical images based on the cosine number transform. Sig. Process. Image Commun. 35, 1–8 (2015)

    Article  Google Scholar 

  19. Lima, J.B.; Lima, E.A.O.; Madeiro, F.: Image encryption based on the finite field cosine transform. Sig. Process. Image Commun. 28, 1537–1547 (2013)

    Article  Google Scholar 

  20. Mariusz, D.; Michal, P.; Roman, R.: A new quaternion-based encryption method for DICOM images. IEEE Trans. Image Process. 24(11), 4614–4622 (2015)

    Article  MathSciNet  Google Scholar 

  21. Yap, W.S.; Phan, R.C.W.; Goi, B.M.: Cryptanalysis of a high-definition image encryption based on AES modification. Wirel. Pers. Commun. 88, 685–699 (2016)

    Article  Google Scholar 

  22. Tu, G.; Liao, X.; Xiang, T.: Cryptanalysis of a color image encryption algorithm based on chaos. Optik 124, 5411–5415 (2013)

    Article  Google Scholar 

  23. Hong, L.; Yanbing, L.: Cryptanalysis an image encryption scheme based on hybrid chaotic system and cyclic elliptic curve. Opt. Laser Technol. 56, 15–19 (2014)

    Article  Google Scholar 

  24. Bao, L.; Zhou, Y.: Image encryption: generating visually meaningful encrypted images. Inf. Sci. 324, 197–207 (2015)

    Article  MathSciNet  Google Scholar 

  25. Kanso, A.; Ghebleh, M.: An algorithm for encryption of secret images into meaningful images. Opt. Lasers Eng. 90, 196–208 (2017)

    Article  Google Scholar 

  26. Xiuli, C.; Zhihua, G.; Yiran, C.; Yushu, Z.: A visually secure image encryption scheme based on compressive sensing. Signal Process. 134, 35–51 (2016). https://doi.org/10.1016/j.sigpro.2016.11.016

    Article  Google Scholar 

  27. Calderbank, A.; Daubechies, I.; Sweldens, W.; Yeo, B.L.: Wavelet transforms that map integers to integers. Appl. Comput. Harmon. Anal. 5, 332–369 (1998)

    Article  MathSciNet  Google Scholar 

  28. Dolendro, L.; Manglem, Kh: A robust image encryption scheme based on chaotic system and elliptic curve over finite field. Multimed. Tools Appl. 76(8), 1–24 (2017)

    Google Scholar 

  29. Robert, M.M.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459–467 (1976)

    Article  Google Scholar 

  30. Whitfield, D.; Martin, E.H.: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  31. Neal, K.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)

    Article  MathSciNet  Google Scholar 

  32. Victor, M.: Use of elliptic curves in cryptography. Adv. Cryptol. CRYPTO’85 218, 417–426 (1986)

    MathSciNet  Google Scholar 

  33. Bianchi, T.; Piva, A.; Barni, M.: Composite signal representation for fast and storage-efficient processing of encrypted signals. IEEE Trans. Inf. Forensics Secur. 5(1), 180–187 (2010)

    Article  Google Scholar 

  34. Andrew, R.; Juan, S.; James, N.; Miles, S.; Elaine, B.; Stefan, L.; Mark, L.; Mark, V.; David, B.; Alan, H.; James, D.; San, V.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. National Institute of Standards and Technology Special Publication 800-22 Revision 1a (2010)

  35. Vladimir, A.; Avez, A.: Ergodic Problems in Classical Mechanics. Benjamin, New York (1968)

    Google Scholar 

  36. Sample Images. http://sipi.usc.edu/database/. Accessed 03 Sep 2016

  37. ECC Brainpool Standard Curves and Curve Generation v. 1.0. http://www.ecc-brainpool.org/download/Domain-parameters.pdf (2005)

  38. Zhou, W.; Alan, C.B.; Hamid, R.S.; Eero, P.S.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  39. Kerckhoffs, A.: La cryptographie militaire. J. Sci. Mil. 9, 5–38 (1883)

    Google Scholar 

  40. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Comp. 32, 918–924 (1978)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laiphrakpam Dolendro Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolendro Singh, L., Manglem Singh, K. Visually Meaningful Multi-image Encryption Scheme. Arab J Sci Eng 43, 7397–7407 (2018). https://doi.org/10.1007/s13369-018-3104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3104-7

Keywords

Navigation