Skip to main content
Log in

A New Approach for Prediction of Solar Radiation with Using Ensemble Learning Algorithm

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article investigates the competence of ensemble learning techniques in solar irradiance prediction. It was seen from the literature survey, an ensemble tree model, random forests is studied more frequently as ensemble models. However, ensemble of support vector regression (SVR) and artificial neural networks (ANN) is also possible. So, this study is the first detailed evaluation of ensemble models in solar irradiance estimation domain. Boosting and bagging ensembles of SVR, ANN and decision tree (DT), are developed to estimate solar irradiance in hourly basis in five cities in Turkey. First frequently used base models (SVR, ANN, and DT) are created and tested with the use of 5 years meteorological data. Then boosting and bagging ensembles of the base models are developed and tested with the same data. The base models are compared with their ensemble counterparts in terms of average coefficient of determination (R2) and root mean squared error (RMSE). The comparative results show that boosting and bagging ensemble models improve SVR, ANN, and DT in terms of RMSE between 4.6 and 14.6% in average. The results show empirically that ensemble models improve prediction accuracies of various base regression models and it can be applied to other machine learning models used in solar irradiance prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMI:

Turkish state meteorological service

SDF:

Sunshine duration fraction

MSDF:

Modified sunshine duration fraction

ANFIS:

Adaptive neuro-fuzzy inference system

ARMA:

Autoregressive moving average

ANN:

Artificial neural network

MLP:

Multi-layer perceptron

SVM:

Support vector machine

SVR:

Support vector regression

DT:

Decision-tree

ID3:

Iternative Dichotomizer

KNN:

K-nearest neighbors

GBT:

Gradient boosting tree

RF:

Random forests

RMSE:

Root mean square error

R 2 :

Coefficient of determination

References

  1. Hassan, M.A.; Khalil, A.; Kaseb, S.; Kassem, M.A.: Potential of four different machine-learning algorithms in modeling daily global solar radiation. Renew. Energy 111, 52–62 (2017)

    Article  Google Scholar 

  2. Rajendran, P.; Smith, H.: Modeling of solar irradiance and daylight duration for solar-powered UAV sizing. Energy Explor. Exploit. 34(2), 235–243 (2016)

    Article  Google Scholar 

  3. Muneer, T.: Solar Radiation and Daylight Models, 2nd edn. Elsevier Butterworth-Heinemann, Jordan Hill (2004)

    Google Scholar 

  4. Zhang, J.; Zhao, L.; Deng, S.; Xu, W.; Zhang, Y.: A critical review of the models used to estimate solar radiation. Renew. Sustain. Energy Rev. 70, 314–329 (2017)

    Article  Google Scholar 

  5. Bayrakçı, H.C.; Demircan, C.; Keçebaş, A.: The development of empirical models for estimating global solar radiation on horizontal surface: a case study. Renew. Sustain. Energy Rev. 81, 2771–2782 (2018)

    Article  Google Scholar 

  6. Mohammadi, K.; Shamshirband, S.; Anisi, M.H.; Alam, K.A.; Petkovic, D.: Support vector regression based prediction of global solar radiation on a horizontal surface. Energy Convers. Manag. 91, 433–441 (2015)

    Article  Google Scholar 

  7. Manzano, A.; Martín, M.L.; Valero, F.; Armenta, C.: A single method to estimate the daily global solar radiation from monthly data. Atmos. Res. 166, 70–82 (2015)

    Article  Google Scholar 

  8. Teke, A.; Yıldırım, H.B.: Estimating the monthly global solar radiation for Eastern Mediterranean Region. Energy Convers. Manag. 87, 628–635 (2014)

    Article  Google Scholar 

  9. Park, J.K.; Das, A.; Park, J.H.: A new approach to estimate the spatial distribution of solar radiation using topographic factor and sunshine duration in South Korea. Energy Convers. Manag. 101, 30–39 (2015)

    Article  Google Scholar 

  10. Garba, M.B.; Muhammad, A.; Musa, M.; Mohammed, A.G.: Assessing the performance of global solar radiation empirical equations in Sokoto, Nigeria using meteorological parameters. Niger. J. Technol. 37, 358–364 (2018)

    Article  Google Scholar 

  11. Shamshirband, S.; Mohammadi, K.; Yee, P.L.; Petković, D.; Mostafaeipour, A.: A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation. Renew. Sustain. Energy Rev. 52, 1031–1042 (2015)

    Article  Google Scholar 

  12. Yau, M.J.; Gele, M.A.; Ali, Y.Y.; Alhaji, A.M.: Global solar radiation models: a review. J. Photon. Mater. Technol. 4, 26–32 (2018)

    Article  Google Scholar 

  13. Piri, J.; Kisi, O.: Modelling solar radiation reached to the Earth using ANFIS, NN-ARX, and empirical models (Case studies: Zahedan and Bojnurd stations). J. Atmos. Solar Terr. Phys. 123, 39–47 (2015)

    Article  Google Scholar 

  14. Wang, L.; Kisi, O.; Kermani, M.Z.; Salazar, G.A.; Zhu, Z.; Gong, W.: Performance of radial basis and LM-feed forward artificial neural networks for predicting daily watershed runoff. Renew. Sustain. Energy Rev. 61, 384–397 (2016)

    Article  Google Scholar 

  15. Xue, X.: Prediction of daily diffuse solar radiation using artificial neural networks. Int J Hydrog Energy 42, 28214–28221 (2017)

    Article  Google Scholar 

  16. Belaid, S.; Mellit, A.: Prediction of daily and mean monthly global solar radiation using support vector machine in an arid climate. Energy Convers. Manag. 118, 105–118 (2016)

    Article  Google Scholar 

  17. Olatomiwa, L.; Mekhilef, S.; Shamshirband, S.; Mohammadi, K.; Petkovic, D.; Sudheer, C.: A support vector machine–firefly algorithm-based model for global solar radiation prediction. Sol. Energy 115, 632–644 (2015)

    Article  Google Scholar 

  18. Meenal, R.; Immanuel Selvakumar, A.I.: Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. Renew. Energy 121, 324 (2017)

    Article  Google Scholar 

  19. Jiang, H.; Dong, Y.: Global horizontal radiation forecast using forward regression on a quadratic kernel support vector machine: case study of the Tibet Autonomous Region in China. Energy 113, 270–283 (2017)

    Article  Google Scholar 

  20. Barrán, A.T.; Alonso, A.; Dorronsoro, J.R.: Regression tree ensembles for wind energy and solar radiation prediction. Neurocomputing 000, 1–10 (2017)

    Google Scholar 

  21. Orjuela-Cañón, A.D.; Hernández, J.; Rivero, C.R.: Very short term forecasting in global solar irradiance using linear and nonlinear models. In: IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), 31 May–2 June 2017, Bogota, Colombia (2017)

  22. Olatomiwa, L.; Mekhilef, S.; Shamshirband, S.; Petković, D.: Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria. Renew. Sustain. Energy Rev. 51, 1784–1791 (2015)

    Article  Google Scholar 

  23. Colak, I.; Yesilbudak, M.; Genc, N.; Bayindir, R.: Multi-period prediction of solar radiation using ARMA and ARIMA models. In: 2015 IEEE 14th International Conference on Machine Learning and Applications, pp. 1045–1049

  24. Rabehi, A.; Guermoui, M.; Lalmi, D.: Hybrid models for global solar radiation prediction: a case study. Int. J. Ambient Energy 1, 1–10 (2018)

    Google Scholar 

  25. Dietterich T.G.: Ensemble methods in machine learning. In: International Workshop on Multiple Classifier Systems, pp. 1–15 (2000)

  26. Hassan, M.A.; Khalil, A.; Kaseb, S.; Kassem, M.A.: Exploring the potential of tree-based ensemble methods in solar radiation modeling. Appl. Energy 203, 897–916 (2017)

    Article  Google Scholar 

  27. Aldave, R.: Systematic Ensemble Learning for Regression, pp. 1–38. Cornel University Library, Ithaca (2014)

    Google Scholar 

  28. Urraca, R.; Antonanzas, J.; Martinez, M.A.; Martinez-de-Pison, F.J.; Torres, F.A.: Smart baseline models for solar irradiation forecasting. Energy Convers. Manag. 108, 539–548 (2016)

    Article  Google Scholar 

  29. Gala, Y.; Fernández, A.; Díaz, J.; Dorronsoro, J.R.: Hybrid machine learning forecasting of solar radiation values. Neurocomputing 176, 48–59 (2016)

    Article  Google Scholar 

  30. Ibrahim, I.A.; Khatib, T.: A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm. Energy Convers. Manag. 138, 413–425 (2017)

    Article  Google Scholar 

  31. Huang, J.; Troccoli, A.; Coppin, P.: An analytical comparison of four approaches to modelling the daily variability of solar irradiance using meteorological records. Renew. Energy 72, 195–202 (2014)

    Article  Google Scholar 

  32. Zhang, Z.: Artificial neural network. In: Multivariate Time Series Analysis in Climate and Environmental Research, pp. 1–35. Springer, Cham (2018)

  33. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40(2), 139–157 (2000)

    Article  Google Scholar 

  34. Liu, C.; Wang, J.; Xiao, D.; Liang, Q.: Forecasting S&P 500 stock index using statistical learning models. Open J. Stat. 6, 1067–1075 (2016)

    Article  Google Scholar 

  35. Strobl, C.; Malley, J.; Tutz, G.: An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol. Methods 14(4), 323–348 (2009)

    Article  Google Scholar 

  36. Cortes, C.; Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  37. Smola, A.J.; Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  38. Basak, D.; Pal, S.; Ch, D.; Patranabis, R.: Support vector regression. Neural Inf. Process. Lett. Rev. 11, 203–224 (2007)

    Google Scholar 

  39. Zhang, C.; Ma, Y.: Ensemble Machine Learning: Methods and Applications. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  40. Valentini, G.; Dietterich, T.G.: Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. J. Mach. Learn. Res. 5, 725–775 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Polikar, R.: Ensemble learning. In: Ensemble Machine Learning. Springer, New York, pp. 1–34 (2012)

  42. Alpaydin, E.: Introduction to Machine Learning, 2nd edn. The MIT Press, London (2004)

    MATH  Google Scholar 

  43. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: European Conference on Computational Learning Theory, pp. 23–37. Springer, Berlin (1995)

  44. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Willmott, C.J.; Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res. 30(1), 79–82 (2005)

    Article  Google Scholar 

  46. Witten, I.H.; Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufman, San Francisco (2005)

    MATH  Google Scholar 

  47. Amancio, D.R.; Comin, C.H.; Casanova, D.; Travieso, G.; Bruno, O.M.; Rodrigues, F.A.; Costa, L.F.: A systematic comparison of supervised classifiers. PLoS ONE 9(4), 94–137 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kivanc Basaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basaran, K., Özçift, A. & Kılınç, D. A New Approach for Prediction of Solar Radiation with Using Ensemble Learning Algorithm. Arab J Sci Eng 44, 7159–7171 (2019). https://doi.org/10.1007/s13369-019-03841-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03841-7

Keywords

Navigation