Skip to main content

Advertisement

Log in

Viscous Dissipation and Joule Heating Effects in Non-Fourier MHD Squeezing Flow, Heat and Mass Transfer Between Riga Plates with Thermal Radiation: Variational Parameter Method Solutions

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A Riga plate is an electromagnetic actuator which comprises permanent magnets and alternating electrodes placed on a plane surface. The present article investigates the influence of viscous and Joule heating (Ohmic dissipation) in the magnetohydrodynamic squeezing flow, heat and mass transfer between two Riga plates. A non-Fourier (Cattaneo–Christov) heat flux model is employed which generalizes the classical Fourier law to incorporate thermal relaxation time. Via suitable transformations, the governing partial differential conservation equations and boundary conditions are non-dimensionalized. The resulting nonlinear ordinary differential boundary value problem is well posed and is solved analytically by the variational parameter method (VPM). Validation of the solutions is included for the special case of non-dissipative flow. Extensive graphical illustrations are presented for the effects of squeeze parameter, magnetic field parameter, modified Hartmann number, radiative parameter, thermal Biot number, concentration Biot number, Eckert number, length parameter, Schmidt number and chemical reaction parameter on the velocity, temperature and concentration distributions. Additionally, the influence of selected parameters on reduced skin friction, Nusselt number and Sherwood number are tabulated. An error analysis is also included for the VPM solutions. Detailed interpretation of the results is provided. The study is relevant to smart lubrication systems in biomechanical engineering and sensor design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data Materials

All data are available with authors only.

Abbreviations

\( a \) :

Dimensional constant

\( b \) :

Width of magnets and electrodes

\( B \) :

Dimensionless constant

\( B_{0} \) :

Applied magnetic field

\( B_{i1} \) :

Biot number for temperature

\( B_{i2} \) :

Biot number for concentration

\( C \) :

Concentration of fluid

\( C_{{{\text{f}}1}} \) :

Concentration of upper plate

\( C_{\text{f}} \) :

Skin friction coefficient

\( C_{\text{h}} \) :

Ambient temperature

\( C_{\text{p}} \) :

Specific heat capacity

\( D_{\text{B}} \) :

Brownian diffusion coefficient

\( Ec \) :

Eckert number

\( h_{1} \) :

Convective heat transfer coefficient

\( h_{2} \) :

Convective mass transfer coefficient

\( j_{0} \) :

Applied current density

\( k \) :

Thermal conductivity

\( K_{\text{c}} \) :

Dimensionless chemical reaction parameter

\( M^{2} \) :

Hartmann magnetic body force parameter

\( M_{0} \) :

Magnetization

\( m^{ * } \) :

Coefficient of mean absorption

\( Nux \) :

Local Nusselt number

\( p \) :

Pressure

\( Pr \) :

Prandtl number

\( q_{\text{r}} \) :

Radiative heat flux (W/m2)

\( \text{R} \) :

Radiation parameter

\( {Re}_{x} \) :

Local Reynolds number

\( Sc \) :

Bioconvection Schmidt number

\( Shx \) :

Local Sherwood number

\( t \) :

Time (s)

\( T \) :

Temperature (K)

\( T_{{{\text{f}}1}} \) :

Temperatures of upper plate

\( u \) :

Velocity component in x-direction (m/s)

\( U_{\text{w}} \) :

Stretching velocity

\( v \) :

Velocity component in y-direction (m/s)

\( v_{\text{f}} \) :

Fluid velocity

\( Z \) :

Modified Hartmann number

\( \beta \) :

Squeezing parameter

\( \beta {}_{\text{e}} \) :

Thermal relaxation time

\( \eta \) :

Dimensionless variable

\( \rho \) :

Fluid density (kg/m3)

\( \sigma \) :

Electric conductivity

\( \sigma^{ * } \) :

Stefan–Boltzmann constant

\( \mu \) :

Dynamic viscosity of squeeze film

\( \gamma \) :

Characteristic constant parameter

\( \delta \) :

Length parameter

\( \varOmega_{\text{E}} \) :

Temperature difference

\( \lambda_{\text{E}} \) :

Thermal relaxation parameter

\( \pi \) :

Component of deformation

\( \psi \) :

Stream function

\( \theta \) :

Dimensional less temperature

\( \phi \) :

Dimensionless concentration

References

  1. Moore, D.F.: A review of squeeze films. Wear 8(4), 245–263 (1965)

    Article  Google Scholar 

  2. Bouzidane, A.; Thomas, M.: Nonlinear dynamic behavior of a flexible shaft supported by smart hydrostatic squeeze film dampers. ASME J. Tribol. 135(3), 031701–031701-9 (2013)

    Article  Google Scholar 

  3. Shamshuddin, M.D.; Mishra, S.R.; Kadir, A.; Bég, O.: Anwar: unsteady chemo-tribological squeezing flow of magnetized bioconvection lubricants: numerical study. J. Nanofluids 8(2), 407–419 (2019)

    Article  Google Scholar 

  4. Cookson, R.A.; Kossa, S.S.: The effectiveness of squeeze-film damper bearings supporting flexible rotors without a centralising spring. Int. J. Mech. Sci. 22, 313–324 (1980)

    Article  MATH  Google Scholar 

  5. Marrero, V.; Borca-Tasciuc, D.A.; Tichy, J.: On squeeze film damping in microsystems. ASME J. Tribol. 132(3), 031701–031701-6 (2010)

    Article  Google Scholar 

  6. Yousif, A.E.; Al-allaq, A.A.: The hydrodynamic squeeze film lubrication of the ankle joint. Int. J. Mech. Eng. Appl. 1(2), 34–42 (2013)

    Google Scholar 

  7. Hlaváček, M.: Squeeze-film lubrication of the human ankle joint subjected to the cyclic loading encountered in walking. ASME J. Tribol. 127(1), 141–148 (2005)

    Article  Google Scholar 

  8. Bujurke, N.M.; Kudenatti, R.B.; Awati, V.B.: Effect of surface roughness on squeeze film poroelastic bearings with special reference to synovial joints. Math. Biosci. 209, 76–89 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, J.; Feng, N.; Meng, G.; Hahn, E.J.: Vibration control of rotor by squeeze film damper with magnetorheological fluid. J. Intell. Mater. Syst. Struct. 17, 353–357 (2006)

    Article  Google Scholar 

  10. Usha, R.; Sridharan, R.: Effect of mass transfer on a similar flow in the magnetohydrodynamic squeeze film. ASME J. Appl. Mech. 64(1), 240–243 (1997)

    Article  MATH  Google Scholar 

  11. Vadher, P.A.; Deheri, G.M.; Patel, R.M.: Performance of hydromagnetic squeeze films between conducting porous rough conical plates. Meccanica 45, 767–783 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shrimpi, M.E.; Deheri, G.M.: A study on the performance of a magnetic fluid-based squeeze film in curved porous rotating rough annular plates and deformation effect. Tribol. Int. 47, 90–99 (2012)

    Article  Google Scholar 

  13. Usha, R.; Vimala, P.: Magnetohydrodynamic squeeze film characteristics between parallel circular plates containing a single central air bubble in the inertial flow regime. ASME J. Appl. Mech. 66(4), 1021–1023 (1999)

    Article  Google Scholar 

  14. Zueco, J.; Bég, O.: Anwar: network numerical analysis of hydromagnetic squeeze film flow dynamics between two parallel rotating disks with induced magnetic field effects. Tribol. Int. 43, 532–543 (2010)

    Article  Google Scholar 

  15. Kumar, K.G.; Gireesha, B.J.; Krishnamurthy, M.R.; Rudraswamy, N.G.: An unsteady squeezed flow of a tangent hyperbolic fluid over a sensor surface in the presence of variable thermal conductivity. Results Phys. 7, 3031–3036 (2017)

    Article  Google Scholar 

  16. Gailitis, A.; Lielausis, O.: On a possibility to reduce the hydrodynamics resistance of a plate in an electrolyte. Appl. Magn. Rep. Phys. Inst. 12, 143–146 (1961)

    Google Scholar 

  17. Ahmad, A.; Asghar, S.; Afzal, S.: Flow of a nanofluid past a Riga plate. J. Magn. Magn. Mater. 402, 44–48 (2016)

    Article  Google Scholar 

  18. Anjum, A.: Physical aspects of heat generation/absorption in the second-grade fluid flow due to Riga plate: application of Cattaneo–Christov approach. Results Phys. (2018). https://doi.org/10.1016/j.rinp.2018.03.024

    Google Scholar 

  19. Hayat, T.; Ullah, I.; Alsaedi, A.; Ahmad, B.: Simultaneous effects of nonlinear mixed convection and radiative flow due to Riga-plate with double stratification. ASME J. Heat Transf. 140(10), 102008 (2018). https://doi.org/10.1115/1.4039994

    Article  Google Scholar 

  20. Mao, J.; Aleksandrova, S.; Molokov, S.: Joule heating in magnetohydrodynamic flows in channels with thin conducting walls. Int. J. Heat Mass Transf. 51, 4392–4399 (2008)

    Article  MATH  Google Scholar 

  21. El-Amin, M.F.: Combined effect of viscous dissipation and Joule heating on MHD forced convection over a non-isothermal horizontal cylinder embedded in a fluid saturated porous medium. J. Magn. Magn. Mater. 263, 337–343 (2003)

    Article  Google Scholar 

  22. Bég, O.A.; Zueco, J.; Takhar, H.S.: Unsteady magnetohydrodynamic Hartmann–Couette flow and heat transfer in a Darcian channel with Hall current, ionslip, viscous and Joule heating effects: network numerical solutions. Commun. Nonlinear Sci. Numer. Simul. 14, 1082–1097 (2009)

    Article  Google Scholar 

  23. Srinivasacharya, D.; Jagadeeshwar, P.: MHD flow with Hall current and Joule heating effects over an exponentially stretching sheet. Nonlinear Eng. Model. Appl. 6(2), 101–114 (2017)

    MATH  Google Scholar 

  24. Zaib, A.; Shafie, S.: Thermal diffusion and diffusion thermo effects on unsteady MHD free convection flow over a stretching surface considering Joule heating and viscous dissipation with thermal stratification, chemical reaction and Hall current. J. Frankl. Inst. 351, 1268–1287 (2014)

    Article  MATH  Google Scholar 

  25. Tripathi, D.; Sharma, A.; Bég, O.A.: Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel: effects of Joule heating and Helmholtz–Smoluchowski velocity. Int. J. Heat Mass Transf. 111, 138–149 (2017)

    Article  Google Scholar 

  26. Golsefid, S.S.M.; Amanifard, N.; Deylami, H.M.; Dolati, F.: Numerical and experimental study on EHD heat transfer enhancement with Joule heating effect through a rectangular enclosure. Appl. Therm. Eng. 123, 689–698 (2017)

    Article  Google Scholar 

  27. Shamshuddin, M.D.; Mishra, S.R.; Bég, O.A.; Kadir, A.: Unsteady reactive magnetic radiative micropolar flow, heat and mass transfer from an inclined plate with Joule heating: a model for magnetic polymer processing. Proc. IMechE Part C Mech. Eng. Sci. (2018). https://doi.org/10.1177/0954406218768837

    Google Scholar 

  28. Hussain, A.; Malik, M.Y.; Salahuddin, T.; Bilal, S.; Awais, M.: Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder. J. Mol. Liq. 231, 341–352 (2017)

    Article  Google Scholar 

  29. Bég, O.A.; Gaffar, S.A.; Prasad, V.R.; Uddin, M.J.: Computational solutions for non-isothermal, nonlinear magnetoconvection in porous media with Hall/ionslip currents and Ohmic dissipation. Eng. Sci. Tech Int. J. 19, 377–394 (2016)

    Article  Google Scholar 

  30. Sucharitha, G.; Lakshminarayana, P.; Sandeep, N.: Joule heating and wall flexibility effects on the peristaltic flow of magnetohydrodynamic nanofluid. Int. J. Mech. Sci. 131(132), 52–62 (2017)

    Article  Google Scholar 

  31. Ahmad, S.; Farooq, M.; Anjum, A.; Javed, M.; Malik, M.Y.; Alshomrani, A.S.: Diffusive species in MHD squeezed fluid flow through non-Darcy porous medium with viscous dissipation and Joule heating. J. Magn. 23(2), 323–332 (2018)

    Article  Google Scholar 

  32. Ghadikolaei, S.S.; Hosseinzadeh, Kh; Ganji, D.D.: Analysis of unsteady MHD Eyring-Powell squeezing flow in stretching channel with considering thermal radiation and Joule heating effect using AGM. Case Stud. Therm. Eng. 10, 579–594 (2017)

    Article  Google Scholar 

  33. Christov, C.I.: On frame indifferent formulation of the Maxwell–Cattaneo model of finite speed heat conduction. Mech. Res. Commun. 36, 481–486 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hayat, T.; Khan, M.; Imtiaz, M.; Alsaedi, A.: Squeezing flow past a Riga plate with chemical reaction and convective conditions. J. Mol. Liq. 225, 569–576 (2017)

    Article  Google Scholar 

  35. Muhammad, N.; Nadeem, S.; Mustafa, T.: Squeezed flow of a nanofluid with Cattaneo–Christov heat and mass fluxes. Res. Phys. 7, 862–869 (2017)

    Google Scholar 

  36. Atlas, M.; Hussain, S.; Sagheer, M.: Entropy generation and squeezing flow past a Riga plate with Cattaneo–Christov heat flux. Bull. Pol. Acad. Sci. Tech. Sci. 66(3), 291–300 (2018)

    Google Scholar 

  37. Shamshuddin, M.D.; Mishra, S.R.; Bég, O.A.; Kadir, A.: Numerical study of heat transfer and viscous flow in a dual rotating extendable disk system with a non-Fourier heat flux model. Heat Transf. Asian Res. (2018). https://doi.org/10.1002/htj.21392

    Google Scholar 

  38. Rashid, M.; Rana, S.; Bég, O.A.; Kadir, A.: Numerical study of chemical reaction effects in magnetohydrodynamic Oldroyd-B oblique stagnation flow with a non-Fourier heat flux model. J. Braz. Soc. Mech Sci. Eng. 40, 526 (2018). https://doi.org/10.1007/s40430-018-1446-4

    Article  Google Scholar 

  39. Ma, W.X.; You, Y.: Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Am. Math Soc. 357, 1753–1778 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tian, Z.Z.; Chen, F.; Wang, D.M.: Influence of interface deformation on transmittable torque of disk-type magnetorheological clutch. J. Intell. Mater. Syst. Struct. 26, 414–424 (2016)

    Article  Google Scholar 

  41. Kumar, L.; et al.: MEMS oscillating squeeze-film pressure sensor with optoelectronic feedback. J. Micromech. Microeng. 25(4), 045011 (2015). https://doi.org/10.1088/0960-1317/25/4/045011

    Article  MathSciNet  Google Scholar 

  42. Khaled, R.A.; Vafai, K.: Hydromagnetic squeezed flow and heat transfer over a sensor surface. Int. J. Eng. Sci. 42, 509–519 (2004)

    Article  MATH  Google Scholar 

  43. Ul Haq, R.; Nadeem, S.; Khan, Z.H.; Noor, N.F.M.: MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface. Physica E Low Dimens. Syst. Nanostruct. 73, 45–53 (2015)

    Article  Google Scholar 

  44. Modest, M.F.: Radiation Heat Transfer. MacGraw-Hill, NY (1993)

    Google Scholar 

  45. Moore, T.J.; Jones, M.R.: Solving nonlinear heat transfer problems using variation of parameters. Int. J Therm. Sci. 93, 29–35 (2015)

    Article  Google Scholar 

  46. Zaidi, Z.A.; Jan, S.U.; Ahmed, N.; Khan, U.; Mohyud-Din, S.T.: Variation of parameters method for thin film flow of a third-grade fluid down an inclined plane. Ital. J. Pure Appl. Math. 31, 161–168 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Khan, S.I.; Khan, U.; Ahmad, N.; Mohyud-Din, S.T.: Variation of parameters method for heat diffusion and heat convection equations. Int. J. Appl. Comput. Math. 3, 185–193 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Akinshilo, A.T.; Olofinkua, J.O.: Variation of Parameters method for thermal analysis of straight convective-radiative fins with temperature dependent thermal conductivity. J. Comput. Appl. Mech. 49, 125–132 (2018)

    Google Scholar 

  49. Mahanthesh, B.; Gireesha, B.J.: Scrutinization of thermal radiation, viscous dissipation and Joule heating effects on Marangoni convective two-phase flow of Casson fluid with fluid particle suspension. Results Phys. 8, 869–878 (2018)

    Article  Google Scholar 

  50. Sampath Kumar, P.B.; Gireesha, B.J.; Mahanthesh, B.; Gorla, R.S.R.: Radiative nonlinear 3D flow of ferrofluid with Joule heating, convective condition and Coriolis force. Therm. Sci. Eng. Prog. 3, 88–94 (2017)

    Article  Google Scholar 

  51. Mahanthesh, B.; Gireesha, B.J.; Prasannakumara, B.C.; Shashikumar, N.S.: Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source. Nuclear Eng. Technol. 49(8), 1660–1668 (2017)

    Article  Google Scholar 

  52. Gireesha, B.J.; Mahanthesh, B.; Gorla, R.S.R.; Manjunatha, P.T.: Thermal radiation and Hall effects on boundary layer flow past a non-isothermal stretching surface embedded in porous medium with non-uniform heat source/sink and fluid-particle suspension. Heat Mass Transf. 52(4), 897–911 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research has not received any specific grants from any sources.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to the manuscript.

Corresponding author

Correspondence to Md. Shamshuddin.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamshuddin, M., Mishra, S.R., Bég, O.A. et al. Viscous Dissipation and Joule Heating Effects in Non-Fourier MHD Squeezing Flow, Heat and Mass Transfer Between Riga Plates with Thermal Radiation: Variational Parameter Method Solutions. Arab J Sci Eng 44, 8053–8066 (2019). https://doi.org/10.1007/s13369-019-04019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04019-x

Keywords

Navigation