Skip to main content

Advertisement

Log in

A Predictive Control Scheme for Large-Scale Grid-Connected PV System Using High-Level NPC Inverter

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper focuses on the control of large-scale grid-connected photovoltaic system. The proposed system is composed of two conversion stages: the first stage contains four PV arrays, each one connected to an individual DC/DC converter (boost converter), while the second stage is a five-level neutral point clamped (NPC) inverter tied to the grid. Each DC-link capacitor input of the NPC inverter is connected to the output of the DC/DC boost converter. In order to enhance the energy harvesting capability of the proposed system, different controllers based on finite-set model predictive control (FS-MPC) are developed and presented. A fast voltage-oriented maximum power point tracking performed by FS-MP current controller (FS-MPCC) is investigated and applied for each boost converter to maximize the produced power from each PV array. Furthermore, a FS-MPC algorithm is proposed to control the centralized five-level NPC inverter. The purposes of the developed controllers are: track the MPP rapidly and accurately under sudden irradiation changes, ensure the balance of the four DC-link capacitor voltages whatever the difference between the extracted powers from each PV system unit, inject the reactive power demanded by the grid operator and also minimize the switching frequency of the five-level NPC inverter. The results obtained through MATLAB/Simulink and Simpower toolbox packages prove that the proposed control scheme provides better performance in comparison with conventional control scheme. Moreover, a high grid current quality and perfect DC-link capacitor voltages balancing are ensured under contrast of extract powers from each PV system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Laib, A.; Krim, F.; Talbi, B.; Kihal, A.; Feroura, H.: Improved control for three phase dual-stage grid-connected PV systems based on predictive control strategy. J. Control Eng. Appl. Inform. 20(3), 12–23 (2018)

    Google Scholar 

  2. Wai, R.J.; Wang, W.H.; Lin, C.Y.: High-performance stand-alone photovoltaic generation system. IEEE Trans. Ind. Electron. 55(1), 240–250 (2008)

    Google Scholar 

  3. Kihal, A.; Krim, F.; Talbi, B.; Laib, A.; Sahli, A.: A robust control of two-stage grid-tied PV systems employing integral sliding mode theory. Energies 11(10), 2791 (2018)

    Google Scholar 

  4. Mechouma, R.; Mebarki, H.; Azoui, B.: Behavior of nine levels NPC three-phase inverter topology interfacing photovoltaic system to the medium electric grid under variable irradiance. Electr. Eng. 100(3), 2129–2145 (2018)

    Google Scholar 

  5. Benadja, M.; Saad, S.; Ali, B.: Sensorless control of inverter dc-bus voltage combined with modified PQ control using extended Kalman filter in a photovoltaic system. Electr. Eng. 99(1), 265–274 (2017)

    Google Scholar 

  6. Ahmed, M.E.S.; Orabi, M.; AbdelRahim, O.M.: Two-stage micro-grid inverter with high-voltage gain for photovoltaic applications. IET Power Electron. 6(9), 1812–1821 (2013)

    Google Scholar 

  7. de Oliveira, F.M.; da Silva, S.A.O.; Durand, F.R.; Sampaio, L.P.; Bacon, V.D.; Campanhol, L.B.: Grid-tied photovoltaic system based on PSO MPPT technique with active power line conditioning. IET Power Electron. 9(6), 1180–1191 (2016)

    Google Scholar 

  8. Menadi, A.; Abdeddaim, S.; Ghamri, A.; Betka, A.: Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system. ISA Trans. 58, 586–594 (2015)

    Google Scholar 

  9. Liu, L.; Li, H.; Xue, Y.; Liu, W.: Decoupled active and reactive power control for large-scale grid-connected photovoltaic systems using cascaded modular multilevel converters. IEEE Trans. Power Electron. 30(1), 176–187 (2015)

    Google Scholar 

  10. Islam, G.M.S.; Al-Durra, A.; Muyeen, S.M.; Tamura, J.: Low voltage ride through capability enhancement of grid connected large scale photovoltaic system. In: 37th Annual Conference on IEEE Industrial Electronics Society IECON, pp. 884–889 (2011)

  11. Xu, D.; Du, C.; Xie, E.: Research and simulation analysis of control strategies for the large-scale grid-connected photovoltaic system. In: Sixth International Conference on Intelligent Control and Information Processing (ICICIP), pp. 167–172 (2015)

  12. Kouro, S.; Asfaw, K.; Goldman, R.; Snow, R.; Wu, B.; Rodriguez, J.: NPC multilevel multistring topology for large scale grid connected photovoltaic systems. In: 2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 400–405 (2010).

  13. Himour, K.; Ghedamsi, K.; Berkouk, E.M.: Supervision and control of grid connected PV-storage systems with the five level diode clamped inverter. Energy Convers. Manag. 77, 98–107 (2014)

    Google Scholar 

  14. Hart, G.W.; Branz, H.M.; Cox, C.H.: Experimental tests of open loop maximum-power-point tracking techniques. Solar Cells 13, 185–195 (1984)

    Google Scholar 

  15. Salameh, Z.; Dagher, F.; Lynch, W.: Step-down maximum power point tracker for photovoltaic systems. Sol. Energy 46, 279–282 (1991)

    Google Scholar 

  16. Belkaid, A.; Colak, I.; Kayisli, K.: Implementation of a modified P&O-MPPT algorithm adapted for varying solar radiation conditions. Electr. Eng. 99(3), 839–846 (2017)

    Google Scholar 

  17. Zainuri, M.A.A.M.; Radzi, M.A.M.; Soh, A.C.; Rahim, N.A.: Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc–dc converter. IET Renew. Power Gener. 8(2), 183–194 (2013)

    Google Scholar 

  18. Safari, A.; Mekhilef, S.: Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter. IEEE Trans. Ind. Electron. 58(4), 1154–1161 (2011)

    Google Scholar 

  19. Liu, F.; Duan, S.; Liu, F.; Liu, B.; Kang, Y.: A variable step size INC MPPT method for PV systems. IEEE Trans. Ind. Electron. 55(7), 2622–2628 (2008)

    Google Scholar 

  20. Algazar, M.M.; El-Halim, H.A.; Salem, M.E.E.K.: Maximum power point tracking using fuzzy logic control. Int. J. Electr. Power Energy Syst. 39(1), 21–28 (2012)

    Google Scholar 

  21. Nabipour, M.; Razaz, M.; Seifossadat, S.G.; Mortazavi, S.S.: A new MPPT scheme based on a novel fuzzy approach. Renew. Sustain. Energy Rev. 74, 1147–1169 (2017)

    Google Scholar 

  22. Rizzo, S.A.; Scelba, G.: ANN based MPPT method for rapidly variable shading conditions. Appl. Energy 145, 124–132 (2015)

    Google Scholar 

  23. Boumaaraf, H.; Talha, A.; Bouhali, O.: A three-phase NPC grid-connected inverter for photovoltaic applications using neural network MPPT. Renew. Sustain. Energy Rev. 49, 1171–1179 (2015)

    Google Scholar 

  24. Chaouachi, A.; Kamel, R.M.; Nagasaka, K.: A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system. Sol. Energy 84(12), 2219–2229 (2010)

    Google Scholar 

  25. Pradhan, R.; Subudhi, B.: Double integral sliding mode MPPT control of a photovoltaic system. IEEE Trans. Control Syst. Technol. 24(1), 285–292 (2016)

    Google Scholar 

  26. de Brito, M.A.G.; Galotto, L.; Sampaio, L.P.; e Melo, G.A.; Canesin, C.A.: Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans. Ind. Electron 60(3), 1156–1167 (2013)

    Google Scholar 

  27. Kollimalla, S.K.; Mishra, M.K.: A novel adaptive P&O MPPT algorithm considering sudden changes in the irradiance. IEEE Trans. Energy Convers. 29(3), 602–610 (2014)

    Google Scholar 

  28. Kakosimos, P.E.; Kladas, A.G.: Implementation of photovoltaic array MPPT through fixed step predictive control technique. Renew Energy 36(9), 2508–2514 (2011)

    Google Scholar 

  29. Talbi, B.; Krim, F.; Rekioua, T.; Laib, A.; Feroura, H.: Design and hardware validation of modified P&O algorithm by fuzzy logic approach based on model predictive control for MPPT of PV systems. J. Renew Sustain. Energy 9(4), 043503 (2017)

    Google Scholar 

  30. Kakosimos, P.E.; Kladas, A.G.; Manias, S.N.: Fast photovoltaic-system voltage-or current-oriented MPPT employing a predictive digital current-controlled converter. IEEE Trans. Ind. Electron. 60(12), 5673–5685 (2013)

    Google Scholar 

  31. Talbi, B.; Krim, F.; Rekioua, T.; Mekhilef, S.; Laib, A.; Belaout, A.: A high-performance control scheme for photovoltaic pumping system under sudden irradiance and load changes. Sol. Energy 159, 353–368 (2018)

    Google Scholar 

  32. Bianconi, E.; Calvente, J.; Giral, R.; Mamarelis, E.; Petrone, G.; Ramos-Paja, C.A.; Spagnuolo, G.; Vitelli, M.: A fast current-based MPPT technique employing sliding mode control. IEEE Trans. Ind. Electron. 60(3), 1168–1178 (2013)

    Google Scholar 

  33. Rivera, S.; Kouro, S.; Wu, B.; Alepuz, S.; Malinowski, M.; Cortes, P.; Rodriguez, J.: Multilevel direct power control—A generalized approach for grid-tied multilevel converter applications. IEEE Trans. Power Electron. 29(10), 5592–5604 (2014)

    Google Scholar 

  34. Eloy-Garcia, J.; Arnaltes, S.; Rodriguez-Amenedo, J.L.: Extended direct power control for multilevel inverters including DC link middle point voltage control. IET Electr. Power Appl. 1(4), 571–580 (2007)

    Google Scholar 

  35. Serpa, L.A.; Barbosa, P.M.; Steimer, P.K.; Kolar, J.W.: Five-level virtual-flux direct power control for the active neutral-point clamped multilevel inverter. In: IEEE Power Electronics Specialists Conference PESC, pp. 1668–1674 (2008)

  36. Wu, B.; Lang, Y.; Zargari, N.; Kouro, S.: Power Conversion and Control of Wind Energy Systems. Wiley, New York (2011)

    Google Scholar 

  37. Portillo, R.; Vazquez, S.; Leon, J.I.; Prats, M.M.; Franquelo, L.G.: Model based adaptive direct power control for three-level NPC converters. IEEE Trans. Ind. Inform. 9(2), 1148–1157 (2013)

    Google Scholar 

  38. Yaramasu, V.; Wu, B.; Chen, J.: Model-predictive control of grid-tied four-level diode-clamped inverters for high-power wind energy conversion systems. IEEE Trans. Power Electron. 29(6), 2861–2873 (2014)

    Google Scholar 

  39. Yaramasu, V.; Wu, B.: Model predictive decoupled active and reactive power control for high-power grid-connected four-level diode-clamped inverters. IEEE Trans. Ind. Electron. 61(7), 3407–3416 (2014)

    Google Scholar 

  40. Rodriguez, J.; Kazmierkowski, M.P.; Espinoza, J.R.; Zanchetta, P.; Abu-Rub, H.; Young, H.A.; Rojas, C.A.: State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inform. 9(2), 1003–1016 (2013)

    Google Scholar 

  41. Kouro, S.; Cortés, P.; Vargas, R.; Ammann, U.; Rodríguez, J.: Model predictive control—A simple and powerful method to control power converters. IEEE Trans. Ind. Electron. 56(6), 1826–1838 (2009)

    Google Scholar 

  42. Bonala, A.K.; Sandepudi, S.R.; Muddineni, V.P.: Model predictive current control with modified synchronous detection technique for three-phase 3L-NPC multi-functional solar photovoltaic system. In: IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1–6 (2016)

  43. Vargas, R.; Cortés, P.; Ammann, U.; Rodríguez, J.; Pontt, J.: Predictive control of a three-phase neutral-point-clamped inverter. IEEE Trans. Ind. Electron. 54(5), 2697–2705 (2007)

    Google Scholar 

  44. Rodriguez, J.; Cortes, P.: Predictive Control of Power Converters and Electrical Drives. Wiley, New York (2012)

    Google Scholar 

  45. Rodriguez, J.; Pontt, J.; Silva, C.A.; Correa, P.; Lezana, P.; Cortés, P.; Ammann, U.: Predictive current control of a voltage source inverter. IEEE Trans. Ind. Electron. 54(1), 495–503 (2007)

    Google Scholar 

  46. Laib, A.; Krim, F.; Talbi, B.; Feroura, H.; Kihal, A.: Decoupled active and reactive power control strategy of grid-connected six-level diode-clamped inverters based on finite set model predictive control for photovoltaic application. Revue Roumaine des Sciences Techniques-Serie Electrotechnique et Energetique 64(1), 51–56 (2019)

    Google Scholar 

  47. Saeed, F.S.; Reza, P.H.: Predictive control of a five-level NPC inverter using a three-phase coupled inductor. In: 7th IEEE Power Electronics and Drive Systems Technologies Conference (PEDSTC), pp. 602–607 (2016)

  48. Feroura, H.; Krim, F.; Talbi, B.; Laib, A.; Belaout, A.: Finite-set model predictive direct power control of grid connected current source inverter. Elektron Elektrotech 23(5), 36–40 (2017)

    Google Scholar 

  49. Scoltock, J.; Geyer, T.; Madawala, U.K.: Model predictive direct power control for grid-connected NPC converters. IEEE Trans. Ind. Electron. 62(9), 5319–5328 (2015)

    Google Scholar 

  50. Chen, Q.; Wang, Q.; Cheng, L.; Zheng, C.: Study of predictive direct power control for three-level NPC converter. In: 11th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1207–1211 (2016)

  51. Sahli, A.; Krim, F.; Belaout, A.: Energy Management and Power Quality Improvement in Grid-Connected Photovoltaic Systems. In: 2017 IEEE International Renewable and Sustainable Energy Conference (IRSEC), pp. 1–7 (2017)

  52. Cortes, P.; Kouro, S.; La Rocca, B.; Vargas, R.; Rodriguez, J.; Leon, J.; Vazquez, S.; Franquelo, L.: Guidelines forweighting factors design in model predictive control of power converters and drives. In: 2009 IEEE International Conference on Industrial Technology (ICIT), pp. 1–7 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Billel Talbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laib, A., Krim, F., Talbi, B. et al. A Predictive Control Scheme for Large-Scale Grid-Connected PV System Using High-Level NPC Inverter. Arab J Sci Eng 45, 1685–1701 (2020). https://doi.org/10.1007/s13369-019-04182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04182-1

Keywords

Navigation