Skip to main content

Advertisement

Log in

Hydrostructural Optimization of a Marine Current Turbine Through Multi-fidelity Numerical Models

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A marine current turbine (MCT) that extracts energy from ocean currents should be hydrodynamically and structurally stable to generate uninterrupted power. This can be achieved through the shape optimization of MCT blades. In this work, a horizontal axis MCT of 0.8 m diameter was optimized through multi-fidelity numerical approach. The design parameters such as blade pitch angle (θ) and the number of rotor blades (NR) were modified to increase the power coefficient (CP) and to reduce the von-Mises stress (σv) using multi-objective optimization technique. A coupled fluid–structure interaction method is used for fluid and structural analysis of MCT. Also, an analysis for identifying the cavitation inception is incorporated. A surrogate-based optimization code was used to produce a Pareto optimal front. The MCT with CP = 0.451 encountered σv = 125.83 MPa and a high total deformation (TD) = 20.259 mm near the blade tip. The TD of the same MCT blade was later reduced to 1/3rd of its actual value by identifying an alternate turbine material. The losses due to vortices, wake generation, and cavitation study are discussed in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

CAD:

Computer-aided design

CFD:

Computational fluid dynamics

FSI:

Fluid–structure interaction

KRG:

Kriging

LE:

Leading edge

MCT:

Marine current turbine

NSGA-II:

Non-dominated sorting genetic algorithm II

PoF:

Pareto optimal front

PRESS:

Predicted error sum of squares

PS:

Pressure side

RBF:

Radial basis function

RSA:

Response surface approximation

SQP:

Sequential quadratic programming

SS:

Suction side

SST:

Shear stress transport

TE:

Trailing edge

TSR:

Tip speed ratio

A :

Rotor area (m)

C :

Cavitation number

C crit :

Critical cavitation number

C D :

Drag coefficient

C L :

Lift coefficient

C local :

Local cavitation number

C P :

Power coefficient

C P(Peak) :

Peak power coefficient

C PR :

Pressure coefficient

CR* :

Cavitation ratio

CV:

Cross-validation

c :

Chord (m)

D :

Turbine tip diameter (m)

D s :

Downstream distance from the turbine (m)

f :

Objective function

h tip :

Distance from the upper tip of the blade to sea surface (m)

k :

Turbulent kinetic energy

NR:

Number of rotor blades

P atm :

Atmospheric pressure (Pa)

P hyd :

Hydrodynamic pressure (Pa)

P local :

Local pressure (Pa)

P nor :

Normalized power (W)

P stat :

Static pressure (Pa)

P vap :

Vapor pressure (Pa)

Q :

Torque (Nm)

R :

Rotor radius (m)

r :

Local radius (m)

TD:

Total deformation (mm)

U T :

Free stream velocity (m/s)

V rel :

Relative velocity

V T :

Blade tip velocity

V* :

Normalized average velocity

Z :

Spanwise distance of the blade section (m)

\( \tilde{e} \) :

PRESS vector

α :

Angle of attack (°)

β :

Twist angle (°)

ρ :

Density (kg/m3)

σ v :

von-Mises stress (MPa)

Ω :

Angular velocity of rotor (rad/s)

θ :

Blade pitch angle (°)

ω :

Specific rate of dissipation

\( \varepsilon \) :

Turbulent dissipation

ERR:

Error

SUR:

Surrogate

References

  1. Bryden, I.G.; Couch, S.J.: How much energy can be extracted from moving water with a free surface: a question of importance in the field of tidal current energy? Renew. Energy 32, 1961–1966 (2007)

    Google Scholar 

  2. ICF Marbek: Review of Selected Tidal Power Technologies. Final Report, Canada (2012)

  3. Waters, S.; Aggidis, G.: Tidal range technologies and state of the art in review. Renew. Sustain. Energy Rev. 59, 514–529 (2016)

    Google Scholar 

  4. Mayeed, M.S., Newaz, G.M., Hall, D., Elder, D.: Comparison of tidal current turbine designs in several high speed locations around the United States. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 13th–19th November, Houston, Texas (2015)

  5. Bahaj, A.S.; Myers, L.E.: Fundamentals applicable to the utilisation of marine current turbines for energy production. Renew. Energy 28, 2205–2211 (2003)

    Google Scholar 

  6. Myers, L.; Bahaj, A.S.: Wake studies of a 1/30th scale horizontal axis marine current turbine. Ocean Eng. 34, 758–762 (2007)

    Google Scholar 

  7. Karthikeyan, T., Samad, A.: Design and optimization of a marine current turbine: effects of pitch angle and twist distribution. In: Advances in Renewable Energies Offshore—Proceedings of 3rd International Conference on Renew Energies Offshore, 8th–10th October, Lisbon, Portugal (2018)

  8. Priegue, L., Stoesser, T., Runge, S.: Effect of blade parameters on the performance of a cross-flow turbine. In: E-Proceedings 36th IAHR World Congress, 28th June–3rd July, The Netherlands (2015)

  9. Le, T.Q.; Lee, K.S.; Park, J.S.; Ko, J.H.: Flow-driven rotor simulation of vertical axis tidal turbines: a comparison of helical and straight blades. Int. J. Nav. Archit. Ocean Eng. 6, 257–268 (2014)

    Google Scholar 

  10. Amet, E.; Maı̂tre, T.; Pellone, C.; Achard, J.L.: 2D numerical simulations of blade-vortex interaction in a Darrieus turbine. J. Fluids Eng. 131, 1–15 (2009)

    Google Scholar 

  11. Barber, R.B.; Motley, M.R.: Cavitating response of passively controlled tidal turbines. J. Fluids Struct. 66, 462–475 (2016)

    Google Scholar 

  12. Rezaeiha, A.; Kalkman, I.; Blocken, B.: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl. Energy 197, 132–150 (2017)

    Google Scholar 

  13. Karthikeyan, T.; Avital, E.J.; Venkatesan, N.; Samad, A.: Optimization of a horizontal axis marine current turbine via surrogate models. Ocean Syst. Eng. 9, 111–133 (2019)

    Google Scholar 

  14. Selig, M.S.; Coverstone-Carroll, V.L.: Application of a genetic algorithm to wind turbine design. J. Energy Resour. Technol. 118, 22–28 (1996)

    Google Scholar 

  15. Fuglsang, P.; Madsen, H.A.: Optimization method for wind turbine rotors. J. Wind Eng. Ind. Aerodyn. 80, 191–206 (1999)

    Google Scholar 

  16. Barthelemy, J.F.M.; Haftka, R.T.: Approximation concepts for optimum structural design—a review. Struct. Optim. 5, 129–144 (1993)

    Google Scholar 

  17. Kumar, P.M.; Seo, J.; Seok, W.; Rhee, S.H.; Samad, A.: Multi-fidelity optimization of blade thickness parameters for a horizontal axis tidal stream turbine. Renew. Energy 135, 277–287 (2018)

    Google Scholar 

  18. Huang, B.; Kanemoto, T.: Multi-objective numerical optimization of the front blade pitch angle distribution in a counter-rotating type horizontal-axis tidal turbine. Renew. Energy 81, 837–844 (2015)

    Google Scholar 

  19. Wood, R.J.K.; Bahaj, A.S.; Turnock, S.R.; Wang, L.; Evans, M.: Tribological design constraints of marine renewable energy systems. Philos. Trans. A Math. Phys. Eng. Sci. 368, 4807–4827 (2010)

    Google Scholar 

  20. Benra, F.K.: Numerical and experimental investigation on the flow induced oscillations of a single-blade pump impeller. J. Fluids Eng. 128, 783–793 (2006)

    Google Scholar 

  21. Mcewen, L.N., Evans, R., Meunier, M.: Cost-effective tidal turbine blades. In: 4th International Conference on Ocean Energy, 7th October, Dublin (2012)

  22. Batten, W.M.J.; Bahaj, A.S.; Molland, A.F.; Chaplin, J.R.: The prediction of the hydrodynamic performance of marine current turbines. Renew. Energy 33, 1085–1096 (2008)

    Google Scholar 

  23. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Google Scholar 

  24. Schluntz, J.; Willden, R.H.J.: The effect of blockage on tidal turbine rotor design and performance. Renew. Energy 81, 432–441 (2015)

    Google Scholar 

  25. Bai, X.; Avital, E.J.; Munjiza, A.; Williams, J.J.R.: Numerical simulation of a marine current turbine in free surface flow. Renew. Energy 63, 715–723 (2014)

    Google Scholar 

  26. Shalaby, H.; Pachler, K.; Wozniak, K.; Wozniak, G.: Comparative study of the continuous phase flow in a cyclone separator using different turbulence models. Int. J. Numer. Methods Fluids 48, 1175–1197 (2005)

    MATH  Google Scholar 

  27. Wilcox, D.C.: Simulation of transition with a two-equation turbulence model. AIAA J. 32, 247–455 (1994)

    MATH  Google Scholar 

  28. Danao, L., Danao, L.A., Abuan, B., Howell, R.: Design analysis of a horizontal axis tidal turbine. In: 3rd Asian Wave and Tidal Conference, 24th–28th October, Singapore (2016)

  29. Karthikeyan, T., Mishra, L., Samad, A.: Optimal design of a marine current turbine using CFD & FEA. In: 4th International Conference on Ocean Engineering, 18th–21st February, Chennai, India (2018)

  30. Kolekar, N.; Banerjee, A.: A coupled hydro-structural design optimization for hydrokinetic turbines. J. Renew. Sustain. Energy 5, 1–22 (2013)

    Google Scholar 

  31. Li, W.; Zhou, H.; Liu, H.; Lin, Y.; Xu, Q.: Review on the blade design technologies of tidal current turbine. Renew. Sustain. Energy Rev. 63, 414–422 (2016)

    Google Scholar 

  32. Buckland, H.C.; Masters, I.; Orme, J.A.C.; Baker, T.: Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines. Proc. Inst. Mech. Eng. Part A J. Power Energy 227, 479–485 (2013)

    Google Scholar 

  33. Murray, R.: Predicting cavitation on marine and hydrokinetic turbine predicting cavitation on marine and hydrokinetic turbine blades with AeroDyn (2017)

  34. Wimshurst, A.; Vogel, C.; Willden, R.: Cavitation limits on tidal turbine performance. Ocean Eng. 152, 223–233 (2018)

    Google Scholar 

  35. Karthikeyan, T., Avital, E.J., Venkatesan, N., Samad, A.: Design and analysis of a marine current turbine. In: ASME Gas Turbine India Conference, 7th & 8th December, Bangalore, India (2017)

  36. Liu, X.; Ning, F.: New response surface model and its applications in aerodynamic optimization of axial compressor blade profile. Front. Energy Power Eng. China 2, 541–549 (2008)

    Google Scholar 

  37. Kim, J.H.; Choi, J.H.; Husain, A.; Kim, K.Y.: Multi-objective optimization of a centrifugal compressor impeller through evolutionary algorithms. Proc. Inst. Mech. Eng. Part A J. Power Energy 224, 711–721 (2010)

    Google Scholar 

  38. Ma, S.B.; Afzal, A.; Kim, K.Y.: Optimization of ring cavity in a centrifugal compressor based on comparative analysis of optimization algorithms. Appl. Therm. Eng. 138, 633–647 (2018)

    Google Scholar 

  39. Simpson, T.W.; Mauery, T.M.; Korte, J.; Mistree, F.: Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J. 39, 2233–2241 (2001)

    Google Scholar 

  40. Ezhilsabareesh, K.; Rhee, S.H.; Samad, A.: Shape optimization of a bidirectional impulse turbine via surrogate models. Eng. Appl. Comput. Fluid Mech. 12, 1–12 (2018)

    Google Scholar 

  41. Cai, X.; Gu, R.; Pan, P.; Zhu, J.: Unsteady aerodynamics simulation of a full-scale horizontal axis wind turbine using CFD methodology. Energy Convers. Manag. 112, 146–156 (2016)

    Google Scholar 

  42. Bangga, G.; Lutz, T.; Dessoky, A.; Krämer, E.: Unsteady Navier–Stokes studies on loads, wake, and dynamic stall characteristics of a two-bladed vertical axis wind turbine. J. Renew. Sustain. Energy 9, 1–13 (2017)

    Google Scholar 

  43. Atcheson, M.; MacKinnon, P.; Elsaesser, B.: A large scale model experimental study of a tidal turbine in uniform steady flow. Ocean Eng. 110, 51–61 (2015)

    Google Scholar 

  44. Waitz, I.A.; Qiu, Y.J.; Manning, T.A.; Fung, A.K.S.; Elliot, J.K.; Kerwin, J.M.; Krasnodebski, J.K.; Sullivan, M.N.O.; Tew, D.E.; Greitzer, E.M.; Marble, F.E.; Tan, C.S.; Tillman, T.G.: Enhanced mixing with streamwise vorticity. Prog. Aerosp. Sci. 33, 323–351 (1997)

    Google Scholar 

  45. Suzuki, T.; Mahfuz, H.: Analysis of large-scale ocean current turbine blades using fluid–structure interaction and blade element momentum theory. Ships Offshore Struct. 13, 451–458 (2018)

    Google Scholar 

  46. Kumar, J.; Wurm, F.H.: Bi-directional fluid–structure interaction for large deformation of layered composite propeller blades. J. Fluids Struct. 57, 32–48 (2015)

    Google Scholar 

  47. Bahaj, A.S.; Molland, A.F.; Chaplin, J.R.; Batten, W.M.J.: Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew. Energy 32, 407–426 (2007)

    Google Scholar 

  48. Batten, W.M.J.; Bahaj, A.S.; Molland, A.F.; Chaplin, J.R.: Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines. Ocean Eng. 34, 1013–1020 (2007)

    Google Scholar 

  49. Goundar, J.N.; Ahmed, M.R.; Lee, Y.H.: Numerical and experimental studies on hydrofoils for marine current turbines. Renew. Energy 42, 173–179 (2012)

    Google Scholar 

  50. Morris, C.E.; O’Doherty, D.M.; O’Doherty, T.; Mason, J.A.: Kinetic energy extraction of a tidal stream turbine and its sensitivity to structural stiffness attenuation. Renew. Energy 88, 30–39 (2016)

    Google Scholar 

  51. Wei, X.; Huang, B.; Liu, P.; Kanemoto, T.; Wang, L.: Experimental investigation into the effects of blade pitch angle and axial distance on the performance of a counter-rotating tidal turbine. Ocean Eng. 110, 78–88 (2015)

    Google Scholar 

  52. Yang, B.; Shu, X.W.: Hydrofoil optimization and experimental validation in helical vertical axis turbine for power generation from marine current. Ocean Eng. 42, 35–46 (2012)

    Google Scholar 

  53. Park, S.; Park, S.; Rhee, S.H.: Influence of blade deformation and yawed inflow on performance of a horizontal axis tidal stream turbine. Renew. Energy 92, 321–332 (2016)

    Google Scholar 

  54. Tahani, M.; Babayan, N.; Astaraei, F.R.; Moghadam, A.: Multi objective optimization of horizontal axis tidal current turbines, using meta heuristics algorithms. Energy Convers. Manag. 103, 487–498 (2015)

    Google Scholar 

  55. Zhu, G.J.; Guo, P.C.; Luo, X.Q.; Feng, J.J.: The multi-objective optimization of the horizontal-axis marine current turbine based on NSGA-II algorithm. IOP Conf. Ser. Earth Environ. Sci. 15, 1–8 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdus Samad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thandayutham, K., Samad, A. Hydrostructural Optimization of a Marine Current Turbine Through Multi-fidelity Numerical Models. Arab J Sci Eng 45, 935–952 (2020). https://doi.org/10.1007/s13369-019-04185-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04185-y

Keywords

Navigation