Skip to main content
Log in

Experimental and Theoretical Investigation of Thermophysical Properties of Synthesized Hybrid Nanofluid Developed by Modeling Approaches

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Although, titanium oxide (TiO2) has appropriate mechanical and chemical stability used in different applications, its thermal conductivity slightly increases with an increasing temperature and concentration compared with other metal oxides such as aluminum oxide (Al2O3). Thus, synthesized aluminum oxide nanoparticles were incorporated on the surfaces of titanium oxide in ultrasonication condition with purpose of thermophysical properties modification. The scanning electron microscopy and X-ray diffraction were used to investigate the structure and morphology of synthesized nanocomposite. The impact of variables (temperature, volume fraction and nanoparticle size) on the thermal conductivity and viscosity of prepared hybrid nanofluid was investigated using KD2Pro instrument and Brookfield DVII viscometer, respectively. Results showed a significant improvement of thermophysical properties of prepared hybrid nanofluid, compared to water or untreated titanium oxide–water. The results showed that three mentioned variables considerably affect the thermophysical properties of hybrid nanofluid; as an increasing volume fraction, reducing nanoparticle size and temperature led to an increasing viscosity while enhanced thermal conductivity was resulted from an increasing nanofluid volume fraction and temperature, and a decreasing nanoparticle size. This was confirmed using two computer-modeling approaches, which allow optimization of the thermophysical properties of hybrid nanofluid. Modifying Response Surface Methodology-Central Composite Design (RSM-CCD) estimated accurately the optimal conditions for thermal conductivity and viscosity. The best artificial neural network model was chosen based on its predictive accuracy for estimation of thermophysical properties; having seven neurons in hidden layer and minimum error, demonstrated the most accurate approach for modeling the considered task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

T :

Temperature (° C)

k :

Thermal conductivity W/m. K

D :

Average crystal size (nm)

μ :

Dynamic viscosity (kg/mS)Pa.s

φ :

Volume fraction %v/v

ρ :

Density(kg/m3)

λ:

Wavelength

References

  1. Hussein, A.M.; Bakar, R.A.; Kadirgama, K.; Sharma, K.V.: Experimental measurement of nanofluids thermal properties. Int. JAutomotive Mech. Eng. (2013). https://doi.org/10.15282/ijame.7.2012.5.0070

    Article  Google Scholar 

  2. Yu, W.; France, D.M.; Routbort, J.L.; Choi, S.U.S.: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Eng. 29, 432–460 (2008)

    Article  Google Scholar 

  3. Tyler, T.; Shenderova, O.; Cunningham, G.; Walsh, J.; Drobnik, J.; McGuire, G.: Thermal transport properties of diamond-based nanofluids and nanocomposites. Diam. Relat. Mater. 15, 2078–2081 (2006)

    Article  Google Scholar 

  4. Das, S.K.; Choi, S.U.S.; Patel, H.E.: Heat transfer in nanofluids, a review. Heat Transfer Eng. 27(10), 3–19 (2006)

    Article  Google Scholar 

  5. Liu, M.S.; Lin, M.C.C.; Huang, I.T.; Wang, C.C.: Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int. Commun. Heat Mass Transfer 32, 1202–1210 (2005)

    Article  Google Scholar 

  6. Choi, S.U.S.; Zhang, Z.G.; Keblinski, P.; Nalwa, H.S. (eds.): Nanofluids, in encyclopedia of nanoscience and nanotechnology, vol. 6, pp. 737–757. American Scientific Publishers, Los Angeles (2004)

    Google Scholar 

  7. Murshed, S.M.S.; Tan, S.H.; Nguyen, N.T.: Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics. J. Phys. D Appl. Phys. 41(085502), 1–5 (2008)

    Google Scholar 

  8. Wong, K.V.; Kurma, T.: Transport properties of alumina nanofluids. Nanotechnology 19(345702), 8 (2008)

    Google Scholar 

  9. Wong, K.V.; Bonn, B.; Vu, S.; Samedi, S.: Study of nanofluid natural convection phenomena in rectangular enclosures, In: Proceedings of IMECE 2007, Nov. 2007, Seattle

  10. Minkowycz, W.; et al.: Nanoparticle Heat Transfer and Fluid Flow. CRC Press, Boca Raton (2013)

    Google Scholar 

  11. Das, S.K.; Stephen, S.U.; Choi, W.Yu; Pradeep, T.: Nanofluids Science and Technology, p. 397. Wiley, New Jersey (2007)

    Book  Google Scholar 

  12. Kakaç, S.; Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006

    Article  MATH  Google Scholar 

  13. Sundar, L.S.; Sharma, K.V.; Singh, Manoj K.; Sousa, A.C.M.: Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor–a review. Renew. Sustain. Energy Rev. 68(P1), 185–198 (2017)

    Article  Google Scholar 

  14. Choi, S.U.S.: Nanofluids: from vision to reality through research. J. Heat Transfer 131(3), 9 (2009)

    Article  Google Scholar 

  15. Masuda, H.; Ebata, A.; Teramea, K.; Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei 4, 227–233 (1993)

    Article  Google Scholar 

  16. Eastman, J.A.; Choi, U.S.; Li, S.; Thompson, L. J.; Lee, S: Enhanced thermal conductivity through the development of nanofluids. In: Komarneni, S., Parker, J. C., Wollenberger, H. J., (eds.)Nanophase and Nanocomposite Materials II. pp. 3–11. Materials Research Society, Pittsburg (1997)

  17. Yu, W.H.; France, D.M.; Routbort, J.L.; Choi, S.U.S.: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Eng. 29, 432–460 (2009)

    Article  Google Scholar 

  18. Eapen, J.; Rusconi, R.; Piazza, R.; Yip, S.: The classical nature of thermal conduction in nanofluids. J. Heat Transfer 132, 102402-1–102402-14 (2010)

    Article  Google Scholar 

  19. Rusconi, R.; Rodari, E.; Piazza, R.: Optical measurements of the thermal properties of nanofluids. Appl. Phys. Lett. 89, 2619161–2619163 (2006)

    Article  Google Scholar 

  20. Putnam, S.A.; Cahill, D.G.; Braun, P.V.: Thermal conductivity of nanoparticle suspensions. J. Appl. Phys. 99, 084308-1–084308-6 (2006)

    Article  Google Scholar 

  21. Venerus, D.C.; Kabadi, M.S.; Lee, S.; Perez-Luna, V.: Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. J. Appl. Phys. 100, 0943101–0943105 (2006)

    Article  Google Scholar 

  22. Buongiorno, J.; Venerus, D.C.; Prabhat, N.: A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 106, 094312-1–094312-14 (2009)

    Article  Google Scholar 

  23. Prasher, R.: Measurements of nanofluid viscosity and its implications for thermal applications. Appl. Phys. Lett. 89(13), 133108 (2006)

    Article  Google Scholar 

  24. Chen, H.; Yulong, D.; Chunqing, T.: Rheological behaviour of nanofluids. New J. Phys. 9(10), 367 (2007)

    Article  Google Scholar 

  25. Xie, H.; Yu, W.; Li, Y.; Chen, L.: Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Res. Lett. 6, 1–24 (2011)

    Article  Google Scholar 

  26. Animasaun, I.L.: 47nm Alumina–water nanofluid flow within boundary layer formed on upper horizontal surface of paraboloid of revolution in the presence of quartic autocatalysis chemical reaction. Alex. Eng. J. 55, 2375–2389 (2016)

    Article  Google Scholar 

  27. Animasaun, I.L.; Sandeep, N.: Buoyancy induced model for the flow of 36 nm alumina–water nanofluid along upper horizontal surface of a paraboloid of revolution with variable thermal conductivity and viscosity. Powder Technol. (2016). https://doi.org/10.1016/j.powtec.2016.07.02

    Article  Google Scholar 

  28. Hemmat Esfe, M.; Esfandeh, S.; Saedodin, S.; Rostamian, H.: Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl. Therm. Eng. 125(2017), 673–685 (2017). https://doi.org/10.1016/J.APPLTHERMALENG.2017.06.077

    Article  Google Scholar 

  29. Moradikazerouni, A.; Hajizadeh, A.; Safaei, M.R.; Afrand, M.; Yarmand, H.; Zulkifli, N.W.B.M.: Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: optimal artificial neural network and curve-fitting. Phys. A Stat. Mech. Appl. 521(2019), 138–145 (2019). https://doi.org/10.1016/j.physa.2019.01.051

    Article  Google Scholar 

  30. Yarmand, H.; Afrand, M.; Safaei, M.R.; Zulkifli, N.W.B.M.; Qi, C.; Hajizadeh, A.: Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Phys. A Stat. Mech. Appl. 519(2018), 209–216 (2018). https://doi.org/10.1016/j.physa.2018.12.010

    Article  Google Scholar 

  31. Nasirzadehroshenin, F.; Maddah, H.; Sakhaeinia, H.; Pourmozafari, A.: Investigation of exergy of double-pipe Heat exchanger using synthesized hybrid nanofluid developed by modeling. Int. J. Thermophys. 40, 87 (2019). https://doi.org/10.1007/s10765-019-2551-z

    Article  Google Scholar 

  32. Manasrah, A.D.; Al-Mubaiyedh, U.A.; Laui, T.; Ben Mansour, R.; Al-Marri, M.J.; Almanassra, I.W.; Abdala, A.; Atieh, M.A.: Appl. Therm. Eng. 107, 1008–1018 (2016)

    Article  Google Scholar 

  33. Chandraprabu, V.; Sankaranarayanan, G.; Iniyan, S.; Suresh, S.: Heat transfer enhancement characteristics of Al2O3/Water and CuO/Water nanofluids in a tube in tube condenser fitted with an air conditioning system—an experimental comparison. J. Therm. Sci. Eng. Appl. 6(041004), 1–5 (2014)

    Google Scholar 

  34. Venkateshan, T.; Eswaramoorthi, M.: A review on performance of heat exchangers with different configurations. Int. J. Res. Appl. Sci. Eng. Technol. 3, 2321–9653 (2015)

    Google Scholar 

  35. Jung, J.-Y.; Cho, C.; Lee, W.H.; Kang, Y.T.: Int. J. Heat Mass Transfer 54, 1728–1733 (2011)

    Article  Google Scholar 

  36. Eastman, J.A.; Choi, S.; Li, S.; Yu, W.; Thompson, L.: Appl. A Phys. Lett. 78, 718–720 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Nasirzadehroshenin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasirzadehroshenin, F., pourmozafari, A., Maddah, H. et al. Experimental and Theoretical Investigation of Thermophysical Properties of Synthesized Hybrid Nanofluid Developed by Modeling Approaches. Arab J Sci Eng 45, 7205–7218 (2020). https://doi.org/10.1007/s13369-020-04352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04352-6

Keywords

Navigation