Skip to main content
Log in

Battery’s Life-Time Estimation of Industrial WirelessHART Sensor Actuator Node

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In industrial applications of wireless technologies, very common, wireless sensor and actuator nodes are installed at fields. Therefore, it is critical to extend battery’s lifetime for ensuring continuous servicing period of field instruments over years. Apart from periodic battery status update during operations of the nodes, at planning stage, plant management team can estimate batteries’ lifetime at field wireless instruments for operational budget estimation and preventive maintenance planning. This work proposes a framework to estimate the battery’s lifetime taken into consideration of periodic update periods and devices’ operational frequencies. The framework is based on the knowledge of wireless node, microcontroller’s power consumption, and battery specifications. Based on the analysis, at particular operational conditions (i.e., update period of 512 s, low-power mode with voltage of 1.8 V), the estimated battery’s lifetime of a wireless node can reach up to 9 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rerkratn, A.; Laosuwan, I.; Tammaruckwattana, S.; Parnklang, J.: Integration of WirelessHART devices into mitsubishi PLC for plant monitoring. In: 2018 3rd International Conference on Control and Robotics Engineering (ICCRE), pp. 209–212 (2018). https://doi.org/10.1109/ICCRE.2018.8376466

  2. Verma, V.K.; Singh, S.; Pathak, N.: Optimized battery models observations for static, distance vector and on-demand based routing protocols over 802.11 enabled wireless sensor networks. Wirel. Pers. Commun. 81(2), 503–517 (2015)

    Article  Google Scholar 

  3. Raza, M.; Aslam, N.; Le-Minh, H.; Hussain, S.; Cao, Y.; Khan, N.M.: A critical analysis of research potential, challenges, and future directives in industrial wireless sensor networks. IEEE Commun. Surv. Tutor. 20(1), 39–95 (2018). https://doi.org/10.1109/COMST.2017.2759725

    Article  Google Scholar 

  4. Amzucu, D.M.; Li, H.; Fledderus, E.: Indoor radio propagation and interference in 2.4 ghz wireless sensor networks: measurements and analysis. Wirel. Pers. Commun. 76(2), 245–269 (2014)

    Article  Google Scholar 

  5. Chen, G.; Cao, X.; Liu, L.; Sun, C.; Cheng, Y.: Joint scheduling and channel allocation for end-to-end delay minimization in industrial wirelesshart networks. IEEE Internet Things J. 6(2), 2829–2842 (2019). https://doi.org/10.1109/JIOT.2018.2875508

    Article  Google Scholar 

  6. Tran, C.D.; Ibrahim, R.; Asirvadam, V.S.; Saad, N.; Miya, H.S.: Internal model control for industrial wireless plant using wirelesshart hardware-in-the-loop simulator. ISA Trans. 75, 236–246 (2018). https://doi.org/10.1016/j.isatra.2017.12.010

    Article  Google Scholar 

  7. Maass, A.I.; Nešić, D.: Stabilization of non-linear networked control systems closed over a lossy wirelesshart network. IEEE Control Syst. Lett. 3(4), 996–1001 (2019). https://doi.org/10.1109/LCSYS.2019.2920435

    Article  Google Scholar 

  8. Blevins, T.; Chen, D.; Nixon, M.; Wojsznis, W.: Wireless Control Foundation: Continuous and Discrete Control for the Process Industry. International Society of Automation, Triangle Park (2015)

    Google Scholar 

  9. Nawaz, F.; Jeoti, V.: Performance assessment of wirelesshart technology for its implementation in dense reader environment. Computing 98(3), 257–277 (2016)

    Article  MathSciNet  Google Scholar 

  10. Chung, T.D.; Ibrahim, R.; Asirvadam, V.S.; Saad, N.; Hassan, S.M.: Wireless HART: Advanced EWMA Filter Design for Industrial Wireless Networked Control Systems, 1st edn. Taylor & Francis Group, LLC, Abingdon (2017)

    Google Scholar 

  11. Saifullah, A.; Xu, Y.; Lu, C.; Chen, Y.: End-to-end communication delay analysis in industrial wireless networks. IEEE Trans. Comput. 64(5), 1361–1374 (2015)

    Article  MathSciNet  Google Scholar 

  12. Yang, D.; Ma, J.; Xu, Y.; Gidlund, M.: Safe-wirelesshart: a novel framework enabling safety-critical applications over industrial wsns. IEEE Trans. Ind. Inform. 14(8), 3513–3523 (2018). https://doi.org/10.1109/TII.2018.2829899

    Article  Google Scholar 

  13. Collotta, M.; Ferrero, R.; Rebaudengo, M.: A fuzzy approach for reducing power consumption in wireless sensor networks: A testbed with IEEE 802.15.4 and WirelessHart. IEEE Access 7, 64866–64877 (2019). https://doi.org/10.1109/ACCESS.2019.2917783

    Article  Google Scholar 

  14. Chung, T.D.; Ibrahim, R.B.; Asirvadam, V.S.; Saad, N.B.; Hassan, S.M.: Simulation of WirelessHart networked control system with packet dropout. In: Control Conference (ASCC), 2015 10th Asian, pp. 1–6. IEEE (2015)

  15. Duc Chung, T.; Ibrahim, R.B.: Building ambient temperature measurement using industrial wireless mesh technology. In: 2019 IEEE Student Conference on Research and Development (SCOReD), pp. 146–151 (2019). https://doi.org/10.1109/SCORED.2019.8896316

  16. Zhu, X., Lin, T., Han, S., Mok, A., Chen, D., Nixon, M., Rotvold, E.: Measuring WirelessHart against wired fieldbus for control. In: IEEE 10th International Conference on Industrial Informatics, pp. 270–275. IEEE (2012)

  17. Talha, M.; Asghar, F.; Kim, S.H.: A neural network-based robust online SOC and SOH estimation for sealed lead-acid batteries in renewable systems. Arab. J. Sci. Eng. 44(3), 1869–1881 (2019). https://doi.org/10.1007/s13369-018-3200-8

    Article  Google Scholar 

  18. Kaur, A.; Sharma, S.; Mishra, A.: Performance optimization of cognitive decision engine for CR-based iots using various parameter-less meta-heuristic techniques. Arabian J. Sci. Eng. 44(11), 9499–9515 (2019). https://doi.org/10.1007/s13369-019-03787-w

    Article  Google Scholar 

  19. Banerjee, A.; Dutta, P.; Ghosh, S.: Experience based energy efficient reactive routing protocol (EXERP) for mobile ad-hoc networks. Arabian J. Sci. Eng. 39(2), 891–901 (2014). https://doi.org/10.1007/s13369-013-0813-9

    Article  Google Scholar 

  20. Ferrari, P.; Flammini, A.; Rizzi, M.; Sisinni, E.: Improving simulation of wireless networked control systems based on wirelesshart. Comput. Stand. Interfaces 35(6), 605–615 (2013)

    Article  Google Scholar 

  21. Khader, O.; Willig, A.: An energy consumption analysis of the wireless hart TDMA protocol. Comput. Commun. 36(7), 804–816 (2013)

    Article  Google Scholar 

  22. Zand, P.; Mathews, E.; Havinga, P.; Stojanovski, S.; Sisinni, E.; Ferrari, P.: Implementation of wirelesshart in the NS-2 simulator and validation of its correctness. Sensors 14(5), 8633–8668 (2014)

    Article  Google Scholar 

  23. Tao, M.; Lu, D.; Yang, J.: An adaptive energy-aware multi-path routing protocol with load balance for wireless sensor networks. Wirel. Pers. Commun. 63(4), 823–846 (2012)

    Article  Google Scholar 

  24. Hou, R.; Chen, Y.; Xing, G.: Path selection for optimizing nonlinear battery energy consumption. IEICE Electron. Express 10(22), 20130689–20130689 (2013)

    Google Scholar 

  25. Hou, R.; Zheng, M.: Packet-based nonlinear battery energy consumption optimizing for wsns nodes. IEICE Electron. Express 11(9), 20140167–20140167 (2014)

    Article  Google Scholar 

  26. Zhang, L.; Zhang, X.; Qu, K.; Ren, L.; Deng, J.; Zhu, K.: Green and cooperative dash in wireless d2d networks. Wirel. Pers. Commun. 84(3), 1797–1816 (2015)

    Article  Google Scholar 

  27. Rahhal, J.S.: Wireless MIMO sensor network with power constraint WLS/BLUE estimators. Wirel. Pers. Commun. 63(2), 447–457 (2012)

    Article  Google Scholar 

  28. Zeng, M.; Lee, J.G.; Choi, G.S.; Lee, J.A.: Intelligent sensor node based a low power ECG monitoring system. IEICE Electron. Express 6(9), 560–565 (2009)

    Article  Google Scholar 

  29. RF Monolithics, I.: XDM2510H 2.4 GHz Ultra-Low Power WirelessHART RF Transceiver Module. RF Monolithics, Inc, Dallas (2010)

    Google Scholar 

  30. Agyei-Ntim, F.; Newman, K.E.: Lifetime estimation of wireless body area sensor networks using probabilistic analysis. Wirel. Pers. Commun. 68(4), 1745–1759 (2013). https://doi.org/10.1007/s11277-012-0548-z.

    Article  Google Scholar 

  31. Gao, D.; Liu, Y.; Zhang, F.; Song, J.: Data aggregation routing for rechargeable wireless sensor networks in forest monitoring. Wirel. Pers. Commun. 79(1), 773–788 (2014)

    Article  Google Scholar 

  32. STMicroelectronics: STM32L051x6 STM32L051x8 - Access line ultra-low-power 32-bit MCU ARM®-Based Cortex®-M0+, up to 64 KB Flash, 8 KB SRAM, 2 KB EEPROM, ADC, docid025938 rev 4 edn. STMicroelectronics (2014)

  33. RF Monolithics, I.: Xdm2510hdk Quick Start Guide. RF Monolithics, Inc, Dallas (2010)

    Google Scholar 

  34. Corporation, A.: AwiaTech WirelessHART Evaluation Kit Manual, 4th edn. AwiaTech Corporation, Austin (2014)

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the help of Universiti Teknologi PETRONAS for its funding to support this research through YUTP Grant No.: 0153AA-A74. In addition, the first author would thank FPT University for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc Chung Tran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, D.C., Ibrahim, R. & Bingi, K. Battery’s Life-Time Estimation of Industrial WirelessHART Sensor Actuator Node. Arab J Sci Eng 45, 6287–6295 (2020). https://doi.org/10.1007/s13369-020-04391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04391-z

Keywords

Navigation