Skip to main content
Log in

Microstructural Properties of Alkali-Activated Metakaolin and Bottom Ash Geopolymer

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a study on the use of alkali-activated metakaolin (MK) and Bottom Ash (BA) blend in geopolymer concrete. A preliminary attempt was made on alkali-activated metakaolin and bottom ash-based geopolymer (MK–BA-GPM) mortar with river sand as fine aggregate to find a suitable mix to produce geopolymer concrete (GPC). The liquid alkaline activator is a combination of sodium silicate and sodium hydroxide solution. The molarity of NaOH was 8 M. Molar ratio of Na2O and SiO2 was 2, and ambient curing mode was selected. Also, M30 grade control concrete was made using OPC and cured in water. Further, GPC and control concrete specimens were tested for compressive strength, split tensile, flexural strength and modulus of elasticity. Also, XRD, SEM and EDAX studies were carried out to analyse element/mineral compounds present and the microstructure and morphological characteristics of GPC to substantiate the strength development. MK–BA GPC demonstrated 49% higher compressive strength than that of control concrete at 28 days. More so, the early as well as later strength gain of GPC was remarkably higher than that of OPC. Strength was due to densification of microstructure over a period of time and due to the formation of additional crystalline phases in geopolymer concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Davidovits, J.: Geopolymers: inorganic polymeric new materials. J. Therm. Anal. 31, 1633–1656 (1991)

    Article  Google Scholar 

  2. Davidovits, J.; Orlinski, J. (eds.): Proceedings of the 1st International Conference Geopolymer, Vol 1. Compiegne, France, pp. 19–23 (1988)

  3. Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42, 2917–2933 (2007)

    Article  Google Scholar 

  4. Davidovits, J.: Fire Proof Geopolymer cements. In: Geopolymer 99 Proceedings. Second International Conference, France, pp. 165–169 (1999)

  5. Davidovits, J.: In: Davidovits J, Orlinski, J. (eds.) Proceedings of the 1st International Conference on Geopolymer, Vol 1. Compiegne, France, pp. 25–34 (1988)

  6. Luz Granizo, M.; Blanco-Varela, M.T.; Martinez- Ramirez, S.: Alkali activation of metakaolins: parameters affecting mechanical, structural and microstructural properties. J. Mater. Sci. 42, 2934–2943 (2007)

    Article  Google Scholar 

  7. Kong, D.L.Y.; Sanjayan, J.G.; Sagoe-Crentsil, K.: Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures mortars. J. Cem. Concr. Res. 37, 1583–1589 (2007)

    Article  Google Scholar 

  8. Phair, J.W.; Van Deventer, J.S.J.: Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int. J. Miner. Proc. 66(1–4), 121–143 (2002)

    Article  Google Scholar 

  9. Rangan, B.V.: Low Calcium Fly Ash Based Geopolymer Concrete. Chapter 26 in Concrete Construction Engineering Handbook, 2nd edn. CRC Press, New York (2007)

    Google Scholar 

  10. Rangan, B.V.: Fly Ash Based Geopolymer Concrete. Research Report GC-4, Faculty of Engineering, Curtin University of Technology, Perth, Australia, pp 1–44 (2008)

  11. Van Xu, H.; Deventer, J.S.J.: The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 59(3), 247–266 (2000)

    Article  Google Scholar 

  12. De Silva, P.; Sagoe-Crenstil, K.: Medium-term phase stability of Na2O–Al2O3–SiO2–H2O geopolymer systems. Cem. Concr. Res. 38(6), 870–876 (2008)

    Article  Google Scholar 

  13. Sathonsaowaphak, A.; Chindaprasirt, P.; Pimraksa, K.: Workability and strength of lignite bottom ash geopolymer mortar. J. Hazard. Mater. 168(1), 44–50 (2009)

    Article  Google Scholar 

  14. Boonserm, K.; Sata, V.; Pimraksa, K.; Chindaprasirt, P.: Improved geopolymerization of bottom ash by incorporating fly ash and using waste gypsum as additive. Cem. Concr. Compos. 34, 819–824 (2012)

    Article  Google Scholar 

  15. Topcu, I.B.; Ugurtoprak, M.: Properties of geopolymer from circulating fluidized bed combustion coal bottom ash. Mater. Sci. Eng., A 528, 1472–1477 (2011)

    Article  Google Scholar 

  16. Sata, V.; Saowaphak, A.S.; Chindaprasirt, P.: Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cem. Concr. Compos. 34, 700–708 (2012)

    Article  Google Scholar 

  17. Ukrainczyk, N.; Ukrainczyk, M.; Sipusic, J.; Matusinovic, T.: XRD and TGA investigation of hardened cement paste degradation. In: Conference on materials, processes, friction and wear MATRIB‟06, Vela Luka, pp. 243–249 (2006)

  18. Revathi, V.; Saravanakumar, R.; Thaarrini, J.: Effect of molar ratio of SiO2/Na2O, Na2SiO3/NaOH ratio and curing mode on the compressive strength of ground bottom ash geopolymer mortar. Int. J. Earth Sci. Eng. 7(4), 1511–1516 (2014)

    Google Scholar 

  19. Revathi, V.; Thaarrini, J.; Venkob Rao, M.: A prospective study on alkali activated bottom ash-GGBS blend in paver blocks. Int. J. Civ. Archit. Struct. Constr. Eng. 8(3), 290–297 (2014)

    Google Scholar 

  20. He, T.; Zhang, T.H.; Yuzhenyu, G.Z.: The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: a comparative study. Constr. Build. Mater. 30, 80–91 (2012)

    Article  Google Scholar 

  21. Khatib, J.M.; Kayali, O.; Siddique, R.: Dimensional change and strength of mortars containing fly ash and metakaolin. J. Mater. Civ. Eng. 21(9), 523–528 (2009)

    Article  Google Scholar 

  22. Reyes Marin-Lopez, C.; Araiza, J.L.; Rubio Manzano-Ramírez, A.; Avalos, J.C.; Perez-Bueno, J.J.; Muniz-Villareal, M.S.: Synthesis and characterization of a concrete based on metakaolin geopolymer. J. Inorgan. Mater. 45(12), 1429–1432 (2011)

    Article  Google Scholar 

  23. Bernal, S.A.; Rodriguez, E.D.; de Gutierrez, R.M.; Gordillo, M.; Provis, J.L.: Mechanical and thermal characterisation of geopolymers based on silicate- activated metakaolin/slag blends’. J. Mater. Sci. 46, 54477–55486 (2011)

    Article  Google Scholar 

  24. Kong, D.L.Y.; Sanjayan, J.G.; Sagoe-Crentsil, K.: Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures. J. Mater. Sci. 43, 824–831 (2008)

    Article  Google Scholar 

  25. Rovnaik, P.: Effect of curing temperature on the development of metakaolin-based Geopolymer. Constr. Build. Mater. 24, 1176–1183 (2010)

    Article  Google Scholar 

  26. Davidovits, J.: Properties of Geopolymer Cements. In: Alkaline Cements and Concretes, KIEV Ukraine (1994)

  27. BIS 12269 - 2013 ‘Ordinary Portland Cement 53 grade Specification, Bureau of Indian Standards, New Delhi

  28. BIS 4032–1985 reaffirmed: Methods of Chemical Analysis of Hydraulic Cement. Bureau of Indian Standards, New Delhi (2005)

    Google Scholar 

  29. BIS 1727- 1967 Reaffirmed 2004, Methods of Test for Pozzolanic Materials: Bureau of Indian Standards, New Delhi

  30. BIS: 2386 – 1963 Part 3Reaffirmed 2002, Indian Standard Methods of Test for Aggregates for Concrete Bureau of Indian Standards, New Delhi

  31. Logesh Kumar, M.; Revathi, V.: Metakaolin bottom ash blend geopolymer mortar—a feasible study. Constr. Build. Mater. 114, 1–5 (2016)

    Article  Google Scholar 

  32. Rangan, B.V.: Mix design and production of fly ash based geopolymer concrete. Indian Concr. J. 82(5), 7–15 (2008)

    Google Scholar 

  33. Susan, B.A.; Provis, J.L.; Rose, V.; de Gutierrez, R.M.: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem Concr Compos 33, 46–54 (2011)

    Article  Google Scholar 

  34. Duxon, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Waltraud, M.K.; Jannie, S.J.; Van Deventer Jannie, S.J.: Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 269, 47–58 (2005)

    Article  Google Scholar 

  35. de Vargas, A.S.; Dal Molin, D.C.C.; Vilea, A.C.F.; da Silva, F.J.; Pavao, B.; Veit, H.: The effect of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly-ash based geopolymers. Cem. Concr. Compos. 33, 653–660 (2011)

    Article  Google Scholar 

  36. Criado, M.; Palomo, A.; Fernandez-Jimenez, A.: Alkali activation of fly ashes Part I. Effect of curing conditions on the carbonation of reaction products. Fuel 84, 2048–2054 (2005)

    Article  Google Scholar 

  37. Criado, M.; Fernandez-Jimenez, A.; De la Torre, A.G.; Aranda, M.A.G.; Palomo, A.: An XRD study of the effect of SiO2/Na2O ratio on the alkali activation of fly ash. Cem. Concr. Res. 37, 671–679 (2007)

    Article  Google Scholar 

  38. Nemecek, J.; Smilauer, V.; Kopecky, L.: Nanoindentation characteristics of alkali-activated aluminosilicate materials. Cem. Concr. Compos. 33, 163–170 (2011)

    Article  Google Scholar 

  39. Pacheco-Torgal, F.; Castro-Gomes, J.O.; Jalali, S.: Alkali-activated binders: a review. Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr. Build. Mater. 22, 1305–1314 (2007)

    Article  Google Scholar 

  40. Zhang, Y.J.; Li, S.; Xu, D.L.; Wang, B.Q.; Xu, G.M.; Yang, D.F.; Wang, N.; Liu, H.C.; Wang, Y.C.: A novel method for preparation of organic resins reinforced geopolymers composites. J. Mater. Sci. 45, 1189–1192 (2010)

    Article  Google Scholar 

  41. Provis, J.L.; Lukey, G.C.; Deventer, J.: Do geopolymer actually contain nonocrystalline Zeolites? A re-examination of existing results. Chem. Mater. 17, 3075–3085 (2005)

    Article  Google Scholar 

  42. Rowles, M.; O’Connor, B.: Chemical optimisation of the compressive strength of alumina silicate geopolymers synthesised by sodium silicate activation of metakaolinite. J. Mater. Chem. 13, 1161–1165 (2003)

    Article  Google Scholar 

  43. Zhang, B.; MacKenzie, K.J.D.; Brown, I.W.M.: Crystalline phase formation in metakaolin geopolymers activated with NaOH and sodium silicate. J. Mater. Sci. 44, 4468–4676 (2009)

    Google Scholar 

  44. Elimbi, A.; Tchakoute, H.K.; Njopwouo, D.: Effect of calcinations temperature of kaolinite clays on the properties of geopolymer cements. Constr. Build. Mater. 25, 2805–2812 (2011)

    Article  Google Scholar 

  45. Zaharaki, D.; Komnitsas, K.; Perdikatsis, V.: Use of analytical techniques for identification of inorganic polymer gel composition. J. Mater. Sci. 45, 2715–2724 (2010)

    Article  Google Scholar 

  46. Palomo, A.; Fernandez-Jimenez, A.; Kovalchuk, G.: Some Key Factors Affecting the Alkali Activation of Fly Ash. In: 2nd International Symposium Non-traditional Cement and Concrete, Brno, Czech Republic (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Logesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.L., Revathi, V. Microstructural Properties of Alkali-Activated Metakaolin and Bottom Ash Geopolymer. Arab J Sci Eng 45, 4235–4246 (2020). https://doi.org/10.1007/s13369-020-04417-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04417-6

Keywords

Navigation