Skip to main content

Advertisement

Log in

Rapid Protocol for Screening of Biocatalyst for Application in Microbial Fuel Cell: A Study with Shewanella algae

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to energy expansion and sustainable development of resources and systems, there has been an increasing demand for environmentally friendly alternative energy systems. Microbial fuel cells (MFCs) are considered one of the most promising alternative energy generation systems. The microorganism is one of the key limiting factors to enhance the performance efficiency of MFC. Therefore, proper evaluation of screening protocol is imperative benchmarks for selection of biocatalyst in MFC. In the present study, an attempt was taken for rapid evaluation of iron-reduction capacity and growth of Shewanella algae through optimization of process parameters using Taguchi methodology. Here, five process parameters, including lactose, trace element, inoculum percentage, pH, and temperature, were taken into consideration as imperative factors and were optimized for evaluation of iron-reduction analysis along with growth of bacteria. The main effect of each parameter, along with their interaction influence and optimal value, was determined using a signal-to-noise (S/N) ratio. The evaluation of quality characteristics of each parameter was also determined in Taguchi robust methodology using S/N ratio. Analysis of variance was performed to assess statistically important process parameters. Predicted results exhibited that enhanced bacterial growth (120%) and iron-reduction capacity (114%) can be achieved with 8 g/L of lactose, 2 mL of trace element solution, 7 of initial pH, 30 °C of temperature, and 4% (v/v) of inoculum percentage. It is evident from the results that Shewanella algae can be used as a promising catalyst for MFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475

    Article  Google Scholar 

  2. Choudhury, P., Uday, U.S.P., Mahata, N., Tiwari, O.N., Ray, R.N., Bandyopadhyay, T.K., Bhunia, B.: Performance improvement of microbial fuel cells for waste water treatment along with value addition: a review on past achievements and recent perspectives. Renew. Sustain. Energy Rev. 79, 372–389 (2017). https://doi.org/10.1016/j.rser.2017.05.098

    Article  Google Scholar 

  3. Lund, H.: Renewable energy strategies for sustainable development. Energy 32(6), 912–919 (2007). https://doi.org/10.1016/j.energy.2006.10.017

    Article  Google Scholar 

  4. Sharma, V., Kundu, P.: Biocatalysts in microbial fuel cells. Enzyme Microbial. Technol. 47(5), 179–188 (2010). https://doi.org/10.1016/j.enzmictec.2010.07.001

    Article  Google Scholar 

  5. Logan, B.E.: Microbial fuel cells. Wiley, New York (2008). https://doi.org/10.1002/9780470258590

    Google Scholar 

  6. Rabaey, K., Verstraete, W.: Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 23(6), 291–298 (2005). https://doi.org/10.1016/j.tibtech.2005.04.008

    Article  Google Scholar 

  7. Lovley, D.R.: The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotechnol. 19(6), 564–571 (2008). https://doi.org/10.1016/j.copbio.2008.10.005

    Article  Google Scholar 

  8. Beg, Q.K., Sahai, V., Gupta, R.: Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochem. 39(2), 203–209 (2003). https://doi.org/10.1016/S0032-9592(03)00064-5

    Article  Google Scholar 

  9. Prasad Uday, U.S., Bandyopadhyay, T.K., Bhunia, B.: Rapid development of xylanase assay conditions using Taguchi methodology. Bioengineered 7(6), 424–431 (2016). https://doi.org/10.1080/21655979.2016

    Article  Google Scholar 

  10. Basak, B., Bhunia, B., Mukherjee, S., Dey, A.: Optimization of physicochemical parameters for phenol biodegradation by Candida tropicalis PHB5 using Taguchi methodology. Desalination Water Treat. 51(34–36), 6846–6862 (2013). https://doi.org/10.1080/19443994.2013.770638

    Article  Google Scholar 

  11. Phadke, M.: Quality engineering using robust design PTR. Prentice Hall Inc., New Jersey (1989). https://doi.org/10.1080/0137451679.2013.770638

    Google Scholar 

  12. Szöllősi, A., Rezessy-Szabó, J.M., Hoschke, Á., Nguyen, Q.D.: Novel method for screening microbes for application in microbial fuel cell. Bioresour. Technol. 179, 123–127 (2015). https://doi.org/10.1016/j.biortech.2014.12.004

    Article  Google Scholar 

  13. He, Z., Wagner, N., Minteer, S.D., Angenent, L.T.: An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ. Sci. Technol. 40(17), 5212–5217 (2006). https://doi.org/10.1021/es060394f

    Article  Google Scholar 

  14. Dehnad, K.: Quality Control, Robust Design, and the Taguchi Method. Wadsworth and Brooks, Pacific Grove, CA (1989). https://link.springer.com/content/pdf/bfm%3A978-1-4684-1472-1

    Book  Google Scholar 

  15. Taguchi, G.: Introduction to Quality Engineering. Asian Productivity Organization. American supplier institute Inc., Dearborn, MI (1986).https://doi.org/10.1016/S0278-6125(05)00004-X

    Google Scholar 

  16. Ben-David, A., Davidson, C.E.: Estimation method for serial dilution experiments. J. Microbiol. Methods 107, 214–221 (2014). https://doi.org/10.1016/j.mimet.2014

    Article  Google Scholar 

  17. Zhou, J., Wu, D., Guo, D.: Optimization of the production of thiocarbohydrazide using the Taguchi method. J Chem Technol Biotechnol 85, 1402–1406 (2010). https://doi.org/10.1002/jctb.2446

    Article  Google Scholar 

  18. Mitra, A.: Fundamentals of Quality Control and Improvement. Pearson Educational Asia, Delhi (1998). https://doi.org/10.1180/0137451679.2013.770638

    MATH  Google Scholar 

  19. Tong, L., Wang, C., Chen, C., Chen, C.: Dynamic multiple responses by ideal solution analysis. Euro. J. Oper. Res. 156, 433–444 (2004). https://doi.org/10.1016/S0377-2217(03)00017-1

    Article  MATH  Google Scholar 

  20. Bhunia, B., Basak, B., Mandal, T., Bhattacharya, P., Dey, A.: Effect of pH and temperature on stability and kinetics of novel extracellular serine alkaline protease (70 kDa). Int. J. Biol. Macromol. 54, 1–8 (2013). https://doi.org/10.1016/j.ijbiomac.2012.11.024

    Article  Google Scholar 

  21. Bhunia, B., Basak, B., Bhattacharya, P., Dey, A.: Process engineering studies to investigate the effect of temperature and pH on kinetic parameters of alkaline protease production. J. Biosci. Bioeng. 115(1), 86–89 (2013). https://doi.org/10.1016/j.jbiosc.2012.08.003

    Article  Google Scholar 

  22. Kooli, W.M., Comensoli, L., Maillard, J., Albini, M., Gelb, A., Junier, P., Joseph, E.: (2018) Bacterial iron reduction and biogenic mineral formation for the stabilisation of corroded iron objects. Sci. Rep. 8(1), 764 (2018). https://doi.org/10.1038/s41598-017-19020-3

    Article  Google Scholar 

  23. Bhunia, B.; Dey, A.: Statistical approach for optimization of physiochemical requirements on alkaline protease production from Bacillus licheniformis NCIM 2042. Enzyme Res. 2012 (2012). https://doi.org/10.1155/2012/905804

  24. Bhunia, B., Dutta, D., Chaudhuri, S.: (2010) Selection of suitable carbon, nitrogen and sulphate source for the production of alkaline protease by Bacillus licheniformis NCIM-2042. Notulae Scientia Biologicae 2(2), 56–59 (2010). https://doi.org/10.15835/nsb224630

    Article  Google Scholar 

  25. Kumar, A., Bhunia, B., Dasgupta, D., Mandal, T., Dey, A., Datta, S., Bhattacharya, P.: Optimization of culture condition for growth and phenol degradation by Alcaligenes faecalis JF339228 using Taguchi Methodology. Desalination Water Treat 51(16–18), 3153–3163 (2013). https://doi.org/10.1080/19443994.2012.749021

    Article  Google Scholar 

  26. He, Y., Chen, Z., Liu, X., Wang, C., Lu, W.: Influence of trace elements mixture on bacterial diversity and fermentation characteristics of liquid diet fermented with probiotics under air-tight condition. PloS ONE 9(12), e114218 (2014). https://doi.org/10.1371/journal.pone.0114218

    Article  Google Scholar 

  27. Adnania, A., Basria, M., Maleka, E.A., Sallehb, A.B., Rahmana, M.B.A., Chaibakhsha, N., Rahmanb, R.N.R.A.: Optimization of lipase-catalyzed synthesis of xylitol ester by Taguchi robust design method. Ind. Crops Product. 31, 350–356 (2010). https://doi.org/10.1016/j.indcrop.2009.12.001

    Article  Google Scholar 

  28. Bhunia, B., Dutta, D., Chaudhuri, S.: Extracellular alkaline protease from Bacillus licheniformis NCIM-2042: Improving enzyme activity assay and characterization. Eng. Life Sci. 11(2), 207–215 (2011). https://doi.org/10.1002/elsc.201000020

    Article  Google Scholar 

  29. Bhunia, B., Basak, B., Bhattacharya, P., Dey, A.: Kinetic studies of alkaline protease from Bacillus licheniformis NCIM-2042. J. Microbiol. Biotechnol. 22(12), 1758–1766 (2012). https://doi.org/10.4014/jmb.1206.06015

    Article  Google Scholar 

  30. Thauer, R.K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41(1), 100 (1977). https://doi.org/10.1002/PMC413997

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon the work supported by the National Institute of Technology, Agartala, India. All authors express gratitude to Director, National Institute of Technology, Agartala, for encouragement and support.

Funding

The authors would like to acknowledge the National Institute of Technology, Agartala, Ministry of Human Resource and Development, Government of India, for Fellowship (0000–0003-4637-991X).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswanath Bhunia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, P., Ray, R.N., Bandyopadhyay, T.K. et al. Rapid Protocol for Screening of Biocatalyst for Application in Microbial Fuel Cell: A Study with Shewanella algae. Arab J Sci Eng 45, 4451–4461 (2020). https://doi.org/10.1007/s13369-020-04444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04444-3

Keywords

Navigation