Skip to main content
Log in

Properties of Eco-Friendly Concrete Contained Limestone and Ceramic Tiles Waste Exposed To High Temperature

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this recent work, ceramic tiles wastes (CW) were utilized as coarse aggregates in different weight fraction ratios starting with 10% till 100% at an increment of 10% in production of normal concrete. Also, 5% of cement weight was substituted via using limestone powder (LP). Slump value, fresh and dry density, absorption ratio and compressive and splitting tensile strengths were tested at 25 °C. As well, dry density and compressive and splitting tensile strengths were found after exposing the specimens to three target temperatures (200, 400 and 600) °C for 2 h. The results indicated that the usage of CW led to enhancing compressive and splitting tensile strengths at room temperature and the maximum increases in these strengths for 60% of CW, which were 164% and 128%, respectively, compared with normal concrete without CW and LP. The usage of CW enhances behavior of mixes exposed to high temperatures. The maximum remaining compressive strength ratios of tested series exposed to 200 °C and 400 °C were 0.882 and 0.804, respectively, for mixes made by using 50% of CW, and the maximum residual compressive strength ratio for series exposed to 600 °C was 0.780 for mix containing 70% of CW. Maximum remaining splitting tensile strength ratios of three series exposed to (200, 400 and 600) °C were 0.969, 0.895 and 0.836, respectively, for mix containing 70% of CW. The obtained results can give indication of producing environmental concrete with enhanced mechanical properties via using ceramic waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mashitah, M.D.; Kin, C.C.; Badorul, A.H.: Recycling of homogenous ceramic tiles for the production of concrete block. In: 2008 International Symposium on Environmental Management: Hazardous-Environmental Management toward Sustainability, pp. 22–23.

  2. Patel, C.P.; Bhavsar, J.K.: Enhancement of concrete properties by replacing cement and fine aggregate with ceramic powder. J. Civ. Eng. Environ. Technol. 3(3), 232–236 (2016)

    Google Scholar 

  3. Lim, N.H.A.S.; Samadi, M.; Shafegat, A.; Ariffn, N.F.; Keyvanfar, A.; Sam, A.R.M.: Effect of homogenous ceramic waste on drying shrinkage of mortar. J. Environ. Treat. Technol. 4(4), 149–152 (2016)

    Google Scholar 

  4. Abdullah, M.M.A.B.; Hussin, K.; Ghazali, C.M.R.; Jamaludin, S.B.: Concrete ceramic waste slab (CCWS). J. Eng. Res. Educ. 3, 139–145 (2006)

    Google Scholar 

  5. Daniyal, M.; Ahmad, S.: Application of waste ceramic tile aggregates in concrete. Int. J. Innov. Res. Sci. Eng. Technol. 4(12), 12808–12815 (2015)

    Google Scholar 

  6. Guendouz, M.; Boukhelkhal, D.: Properties of flow able sand concrete containing ceramic wastes. J. Adhes. Sci. Technol. 33(24), 2661–2683 (2019)

    Article  Google Scholar 

  7. Reig, L.; Tashima, M.M.; Soriano, L.; Borrachero, M.V.; Monzó, J.; Payá, J.: Alkaline activation of ceramic waste materials. Waste Biomass Valoriz. 4(4), 729–736 (2013)

    Article  Google Scholar 

  8. Ikponmwosa, E.E.; Ehikhuenmen, S.O.: The effect of ceramic waste as coarse aggregate on strength properties of concrete. Nigerian J. Technol. 36(3), 691–696 (2017)

    Google Scholar 

  9. Ulubeyli, G.Ç.; Bilir, T.; Artir, R.: Ceramic wastes usage as alternative aggregate in mortar and concrete. Period. Eng. Nat. Sci. 5(2), 194–201 (2017)

    Google Scholar 

  10. Mandavi, H.K.; Srivastava, V.; Agarwal, V.C.: Durability of concrete with ceramic waste as fine aggregate durability of concrete with ceramic waste as fine aggregate replacement. Int. J. Eng. Tech. Res. 3(8), 196–199 (2015)

    Google Scholar 

  11. Dina, M.; Sadek, D.M.; El Nouhy, H.A.: Properties of paving units incorporating crushed ceramic. HBRC J. 10(2), 198–205 (2014)

    Article  Google Scholar 

  12. Devi, V.S.; Gnanavel, B.K.; Murthi, P.; Madhanagopal, M.: Investigation of novel sustainable concrete using optimization technique. Adv. Mater. Proc. 2(2), 86–92 (2017)

    Article  Google Scholar 

  13. Awoyera, P.O.; Akinmusuru, J.O.; Ndambuki, J.M.: Green concrete production with ceramic wastes and laterite. Constr. Build. Mater. 117, 29–36 (2016)

    Article  Google Scholar 

  14. Mazenan, P.N.; Khalid, F.S.; Shahidan, S.; Shamsuddin, S.M.: Review of palm oil fuel ash and ceramic waste in the production of concrete. IOP Conf. Ser. Mater. Sci. Eng. Conf. Ser. 271(1), 012051 (2017)

    Article  Google Scholar 

  15. Awoyera, P.O.; Ndambuki, J.M.; Akinmusuru, J.O.; Omole, D.O.: Characterization of ceramic waste aggregate concrete. HBRC J. 14(3), 282–287 (2018)

    Article  Google Scholar 

  16. Khalid, F.S.; Azmi, N.B.; Sumandi, K.A.S.M.; Mazenan, P.N.: Mechanical properties of concrete containing recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate replacement. AIP Conf. Proc. 1891(1), 020079 (2017)

    Article  Google Scholar 

  17. Andrzejuk, W.; Sałuch, M.; Zegardło, B.; Szczygielska, E.; Żukiewicz-Sobczak, W.; Sobczak, P.; Wołyńczuk, K.: Properties of recycled ceramic aggregates specified in WT-1 2014 aggregates-technical requirements. In: 2018 E3S Web of Conf. 49, 00-01. EDP Sci.

  18. Ogrodnik, P.; Szulej, J.: The assessment of possibility of using sanitary ceramic waste as concrete aggregate determination of the basic material characteristics. Appl. Sci. 8(7), 1205 (2018)

    Article  Google Scholar 

  19. Siddique, S.; Shrivastava, S.; Chaudhary, S.; Gupta, T.: Strength and impact resistance properties of concrete containing fine bone China ceramic aggregate. Constr. Build. Mater. 169, 289–298 (2018)

    Article  Google Scholar 

  20. Ogrodnik, P.; Szulej, J.: The impact of aeration of concrete based on ceramic aggregate exposed to high temperatures, on its strength parameters. Constr. Build. Mater. 157, 909–916 (2017)

    Article  Google Scholar 

  21. Jackiewicz-Rek, W.; Załęgowski, K.; Garbacz, A.; Bissonnette, B.: Properties of cement mortars modified with ceramic waste fillers. Procedia Eng. 108, 681–687 (2015)

    Article  Google Scholar 

  22. Nasr, M.S.; Hussain, T.H.; Najim, W.N.: Properties of cement mortar containing biomass bottom ash and sanitary ceramic wastes as a partial replacement of cement. Int. J. Civ. Eng. Technol. 9(10), 153–165 (2018)

    Google Scholar 

  23. Halicka, A.; Ogrodnik, P.; Zegardlo, B.: Using ceramic sanitary ware waste as concrete aggregate. Constr. Build. Mater. 48, 295–305 (2013)

    Article  Google Scholar 

  24. Ali, S.T.; El-Dieb, A.S.; Aboubakr, S.H.; Taha, M.M.R.: Utilization of ceramic waste powder in self-compacting concrete. In: 2016 Fourth International Conference on Sustainable.

  25. Aly, S.T.; Kanaan, D.M.; El-Dieb, A.S.; Abu-Eishah, S.I.: Properties of ceramic waste powder-based geo-polymer concrete. In: 2018 International Congress on Polymers in Concrete, pp. 429–435. Springer, Cham

  26. Binici, H.: Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties. Constr. Build. Mater. 21(6), 1191–1197 (2007)

    Article  Google Scholar 

  27. Raval, A.D.; Patel, I.N.; Pitroda, J.: Ceramic waste: Effective replacement of cement for establishing sustainable concrete. Int. J. Eng. Trends Technol. (IJETT) 4(6), 2324–2329 (2013)

    Google Scholar 

  28. Huseien, G.F.; Al-fasih, M.Y.; Mansor, S.B.; Hussein, K.H.: Performance of self-compacting concrete with different sizes of recycled ceramic aggregates. Int. J. Innov. Res. Creat. Technol. (IJIRCT) 1(3), 264–269 (2015)

    Google Scholar 

  29. Subaşı, S.; Öztürk, H.; Emiroğlu, M.: Utilizing of waste ceramic powders as filler material in self-consolidating concrete. Constr. Build. Mater. 149, 567–574 (2017)

    Article  Google Scholar 

  30. Khalid, F.S.; Puteri, N.M.; Abdul, H.A.G.; Nurul, B.A.; Mohd, I.J.; Shahiron, S.M.H.W.I.: Utilization of palm fuel ash (POFA) and ceramic waste as cement materials replacement in concrete production. Int. J. Eng. Technol. 7(3.9), 89–92 (2018)

    Article  Google Scholar 

  31. Cristiano, M.: The use of ceramic waste aggregates in concrete: a literary review. Conference concrete 2014 progetto e tecnologia per il costruito tra xx e xxi secolo (2014)

  32. Li, L.G.; Zhuo, Z.Y.; Zhu, J.; Chen, J.J.; Kwan, A.K.H.: Reutilizing ceramic polishing waste as powder filler in mortar to reduce cement content by 33% and increase strength by 85%. Powder Technol. 355, 119–126 (2019)

    Article  Google Scholar 

  33. Ayat, H.; Kellouche, Y.; Ghrici, M.; Boukhatem, B.: Compressive strength prediction of limestone filler concrete using artificial neural networks. Adv. Comput. Des. 3(3), 289–302 (2018)

    Google Scholar 

  34. Kim, Y.J.; Leeuwen, R.V.; Cho, B.Y.; Sriraman, V.; Torres, A.: Evaluation of the efficiency of limestone powder in concrete and the effects on the environment. Sustainability 10(2), 550 (2018)

    Article  Google Scholar 

  35. Bonavetti, V.; Donza, H.; Menendez, G.; Cabrera, O.; Irassar, E.F.: Limestone filler cement in low w/c concrete: a rational use of energy. Cement Concrete Res. 33(6), 865–871 (2003)

    Article  Google Scholar 

  36. Bhuiyan, S.: Permeability of concrete incorporation limestone filler and pulverized fuel ash (2012)

  37. Phung, Q.T.; Maes, N.; Jacques, D.; De Schutter, G.; Ye, G.: Effect of limestone fillers on ca-leaching and carbonation of cement pastes. Key Eng. Mater. 711, 269–276 (2016)

    Article  Google Scholar 

  38. Leo, L.G.; Kwan, A.K.: Adding limestone fines as cementitious paste replacement to improve tensile strength, stiffness and durability of concrete. Cement Concrete Compos. 60, 17–24 (2015)

    Article  Google Scholar 

  39. ASTM C311: Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. ASTM International, West Conshohocken (2016)

  40. ASTM C192/C192M-18: Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, West Conshohocken (2018)

  41. ASTM C143 – 89: Standard Test Method for Slump of Hydraulic-Cement Concrete, Annual Book of ASTM Standards, pp. 85–86. ASTM International, West Conshohocken (2018)

  42. ASTM Designation C 138-86: Test Method for Unit Weight of Concrete Specimens, Annual Book of ASTM, Standards ,Section 4, Vol. 02, pp. 96–98. American Society for Testing and Materials, Philadelphia

  43. British Standard Institute: Method for Determination of Compressive Strength of Concrete Cubes, BS 1881: Part 116:1983, pp. 215–217

  44. ASTM C496: American Society for Testing and Materials, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, Annual Book of ASTM Standard, Philadelphia, vol. 04-02, pp. 5 (2011)

  45. ASTM C 642-06: Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, United States Am. Soc. Test. Mater., pp 11–13 (2008)

  46. Alrekabi, T.K.; Cunha, V.M.; Barros, J.A.: Reactive powder concrete reinforced with steel fibers exposed to high temperatures. In: 2017 IOP Conference Series: Mate. Sci. and Eng., vol. 246(1), 012-020. IOP Publishing (2017)

  47. Hilal, N.N.: Performance of fiber normal-weight concrete exposed to elevated temperatures. Iraqi J. Civ. Eng. 8(1), 1–14 (2012)

    Google Scholar 

  48. Zegardło, B.; Szeląg, M.; Ogrodnik, P.: Ultra-high strength concrete made with recycled aggregate from sanitary ceramic wastes—the method of production and the interfacial transition zone. Constr. Build. Mater. 122, 736–742 (2016)

    Article  Google Scholar 

  49. Medina, C.; de Rojas, M.I.S.; Frias, M.: Freeze-thaw durability of recycled concrete containing ceramic aggregate. J. Clean. Prod. 40, 151–160 (2013)

    Article  Google Scholar 

  50. Arioz, O.: Effects of elevated temperatures on properties of concrete. Fire Saf. J. 42(8), 516–522 (2007)

    Article  Google Scholar 

  51. Bingöl, A.F.; Gül, R.: Effect of elevated temperatures and cooling regimes on normal strength concrete. Fire Mater Int. J. 33(2), 79–88 (2009)

    Article  Google Scholar 

  52. Hertz, K.D.: Concrete strength for fire safety design. Mag. Concrete Res. 57(8), 445–453 (2005)

    Article  Google Scholar 

  53. Zega, C.J.; Di Maio, A.A.: Recycled concrete exposed to high temperatures. Mag. Concrete Res. 58(10), 675–682 (2006)

    Article  Google Scholar 

  54. Irassar, E.F.; Rahhal, V.; Tironi, A.; Trezza, M.; Pavlík, Z.; Pavlíková, M.; Jerman, M.; Cerný, R.: Utilization of ceramic wastes as pozzolanic materials. In: Technical Proceedings of the NSTI Nanotechnology Conference and Expo, pp. 230–233 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahla N. Hilal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilal, N.N., Mohammed, A.S. & Ali, T.K.M. Properties of Eco-Friendly Concrete Contained Limestone and Ceramic Tiles Waste Exposed To High Temperature. Arab J Sci Eng 45, 4387–4404 (2020). https://doi.org/10.1007/s13369-020-04482-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04482-x

Keywords

Navigation