Skip to main content
Log in

Establishing a Correlation Between Residual Stress and Natural Frequency of Vibration for Electron Beam Butt Weld of AISI 304 Stainless Steel

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Residual stresses developed during complex multi-physics electron beam welding process are usually detrimental to the joint integrity. Moreover, the natural frequencies of vibration are reported to decrease with an increase in stress value. Not much literature is available on the study of the changes in natural frequency of vibration due to welding stresses. Moreover, such analysis is limited to mathematical modeling and conventional welding processes. Thus, in the present study, residual stresses of the welds corresponding to different heat inputs are measured experimentally using X-ray diffraction machine. A Polytec laser vibrometerdata acquisition systemLabView assembly is used to experimentally determine the natural frequencies of vibration. The novelty of this study lies with the establishment of a correlation between the measured welding stress and natural frequency of vibration. Additionally, the experimentally obtained residual stresses have also been validated through FEM results with satisfactory agreement. Furthermore, a noble approach of stress estimation using the natural frequencies is proposed and tested successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

C p :

Specific heat

\( h \) :

Maximum heat source spread along the plate thickness

\( I \) :

Beam current

\( k \) :

Thermal conductivity

\( M1 \) :

Mode one natural frequency of vibration

\( M2 \) :

Mode two natural frequency of vibration

\( M3 \) :

Mode three natural frequency of vibration

\( M4 \) :

Mode four natural frequency of vibration

q v :

Volume heat flux

Q :

Total input power

Q s :

Net power acting on the surface

Q v :

Net power acting on the volume

T :

Temperature

t :

Time

U :

Welding speed

\( V \) :

Accelerating voltage

r b :

Beam radius at the workpiece surface

\( r \) :

Instantaneous beam radius

RSIPP :

Residual stress obtained from input process parameters

RSNFV :

Residual stress obtained from natural frequency of vibrations

\( x,y,z \) :

Space coordinates

\( \gamma_{\text{s}} \) :

A surface coefficient

\( \gamma_{\text{v}} \) :

A volume coefficient

η :

Efficiency

ρ :

Density

\( \psi \) :

Angles for stress measurements

DAQ:

Data acquisition

EBW:

Electron beam welding

FFT:

Fast Fourier transformation algorithm

FEM:

Finite element model

GTAW:

Gas tungsten arc welding

NDT:

Nondestructive testing

SS:

Stainless steel

XRD:

X-ray diffraction

References

  1. Rao, S.S.: Mechanical Vibrations in SI Units, 6th edn. Pearson Education Inc., Hoboken (2017)

    Google Scholar 

  2. Vieira, A.B.; Rade, D.A.; Scotti, A.: Identification of welding residual stresses in rectangular plates using vibration responses. Inverse Probl. Sci. Eng. 14, 313–331 (2006). https://doi.org/10.1080/17415970500521361

    Article  MATH  Google Scholar 

  3. Feng, S.; Zhou, H.; Dong, H.: Using deep neural network with small dataset to predict material defects. Mater. Des. 162, 300–310 (2019). https://doi.org/10.1016/j.matdes.2018.11.060

    Article  Google Scholar 

  4. Mathew, J.; Griffin, J.; Alamaniotis, M.; Kanarachos, S.; Fitzpatrick, M.E.: Prediction of welding residual stresses using machine learning: comparison between neural networks and neuro-fuzzy systems. Appl. Soft Comput. 70, 131–146 (2018). https://doi.org/10.1016/j.asoc.2018.05.017

    Article  Google Scholar 

  5. Das, D.; Pratihar, D.K.; Roy, G.G.; Pal, A.R.: Phenomenological model-based study on electron beam welding process, and input-output modeling using neural networks trained by back-propagation algorithm, genetic algorithms, particle swarm optimization algorithm and bat algorithm. Appl. Intell. 48, 2698–2718 (2018). https://doi.org/10.1007/s10489-017-1101-2

    Article  Google Scholar 

  6. Rai, R.; Palmer, T.A.; Elmer, J.W.; Debroy, T.: Heat transfer and fluid flow during electron beam welding of 304L stainless steel alloy. Weld. J. 88, 54–61 (2009)

    Google Scholar 

  7. Vilar, R.; Zapata, J.; Ruiz, R.: An automatic system of classification of weld defects in radiographic images. NDT E Int. 42, 467–476 (2009). https://doi.org/10.1016/j.ndteint.2009.02.004

    Article  Google Scholar 

  8. Hou, W.; Wei, Y.; Jin, Y.; Zhu, C.: Deep features based on a DCNN model for classifying imbalanced weld flaw types. Measurement 131, 482–489 (2019). https://doi.org/10.1016/j.measurement.2018.09.011

    Article  Google Scholar 

  9. Lu, F.; Li, X.; Li, Z.; Tang, X.; Cui, H.: Formation and influence mechanism of keyhole-induced porosity in deep-penetration laser welding based on 3D transient modeling. Int. J. Heat Mass Transf. 90, 1143–1152 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.041

    Article  Google Scholar 

  10. Deshpande, A.A.; Tanner, D.W.J.; Sun, W.; Hyde, T.H.; McCartney, G.: Combined butt joint welding and post weld heat treatment simulation using SYSWELD and ABAQUS. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 225, 1–10 (2011). https://doi.org/10.1177/14644207jmda349

    Article  Google Scholar 

  11. Vourna, P.; Ktena, A.; Tsakiridis, P.E.; Hristoforou, E.: An accurate evaluation of the residual stress of welded electrical steels with magnetic Barkhausen noise. Measurement 71, 31–45 (2015). https://doi.org/10.1016/j.measurement.2015.04.007

    Article  Google Scholar 

  12. Akbari Mousavi, S.A.A.; Miresmaeili, R.: Experimental and numerical analyses of residual stress distributions in TIG welding process for 304L stainless steel. J. Mater. Process. Technol. 208, 383–394 (2008). https://doi.org/10.1016/j.jmatprotec.2008.01.015

    Article  Google Scholar 

  13. Paradowska, A.; Price, J.W.H.; Ibrahim, R.; Finlayson, T.: A neutron diffraction study of residual stress due to welding. J. Mater. Process. Technol. 164–165, 1099–1105 (2005). https://doi.org/10.1016/j.jmatprotec.2005.02.092

    Article  Google Scholar 

  14. Shi, J.; Booth, S.: An investigation of effects of welding residual stresses on creep crack growth for a low alloy butt weld. Int. J. Press. Vessel. Pip. 108–109, 67–71 (2013). https://doi.org/10.1016/j.ijpvp.2013.04.010

    Article  Google Scholar 

  15. Ferro, P.; Zambon, A.; Bonollo, F.: Investigation of electron-beam welding in wrought Inconel 706—experimental and numerical analysis. Mater. Sci. Eng. A 392, 94–105 (2005). https://doi.org/10.1016/j.msea.2004.10.039

    Article  Google Scholar 

  16. Reynolds, A.P.; Tang, W.; Gnaupel-Herold, T.; Prask, H.: Structure, properties, and residual stress of 304L stainless steel friction stir welds. Scr. Mater. 48, 1289–1294 (2003). https://doi.org/10.1016/S1359-6462(03)00024-1

    Article  Google Scholar 

  17. Liu, C.; Zhang, J.X.; Xue, C.B.: Numerical investigation on residual stress distribution and evolution during multipass narrow gap welding of thick-walled stainless steel pipes. Fusion Eng. Des. 86, 288–295 (2011). https://doi.org/10.1016/j.fusengdes.2011.01.116

    Article  Google Scholar 

  18. Huo, L.; Chen, F.; Zhang, Y.; Zhang, L.; Liu, F.; Chen, G.: 3D Finite element numerical simulation of residual stresses on electron beam welded BT20 plates. Cailiao Kexue Yu Jishu (J. Mater. Sci. Technol.) 20, 117–120 (2004)

    Google Scholar 

  19. Thomas, K.; Arne, K.: Formation of welding residual stresses in low transformation temperature (LTT) materials. Soldag. Inspeção. 14, 74–81 (2009). https://doi.org/10.1590/S0104-92242009000100009

    Article  Google Scholar 

  20. Javadi, Y.; Pirzaman, H.S.; Raeisi, M.H.; Najafabadi, M.A.: Ultrasonic inspection of a welded stainless steel pipe to evaluate residual stresses through thickness. Mater. Des. 49, 591–601 (2013). https://doi.org/10.1016/j.matdes.2013.02.050

    Article  Google Scholar 

  21. Yelbay, H.I.; Cam, I.; Gur, C.H.: Non-destructive determination of residual stress state in steel weldments by magnetic Barkhausen noise technique. NDT E Int. 43, 29–33 (2010). https://doi.org/10.1016/j.ndteint.2009.08.003

    Article  Google Scholar 

  22. Barsoum, Z.; Barsoum, I.: Residual stress effects on fatigue life of welded structures using LEFM. Eng. Fail. Anal. 16, 449–467 (2009). https://doi.org/10.1016/j.engfailanal.2008.06.017

    Article  Google Scholar 

  23. Nguyen, N.T.; Ohta, A.; Matsuoka, K.; Suzuki, N.; Maeda, Y.: Analytical solutions for transient temperature of semi-infinite body subjected to 3-D moving heat sources. Weld. Res. Suppl. 78, 265–274 (1999)

    Google Scholar 

  24. Nataraj, J.R.; Rajkumar, G.R.: Finite element analysis of dissimilar welding between newly developed Cr-free nickel based welding electrode and stainless steel AISI 304. Int. J. Res. Eng. Technol. 2, 130–135 (2013)

    Google Scholar 

  25. Vemanaboina, H.; Akella, S.; Buddu, R.K.: Welding process simulation model for temperature and residual stress analysis. Procedia Mater. Sci. 6, 1539–1546 (2014). https://doi.org/10.1016/j.mspro.2014.07.135

    Article  Google Scholar 

  26. Bezerra, A.C.; Vieira, L.C.; Rade, D.A.; Scotti, A.: On the influence of welding residual stresses on the dynamic behavior of structures. Shock Vib. 15, 447–458 (2008)

    Article  Google Scholar 

  27. Kaldas, M.M.; Dickinson, S.M.: The flexural vibration of welded rectangular plates. J. Sound Vib. 75, 163–178 (1981). https://doi.org/10.1016/0022-460X(81)90337-0

    Article  Google Scholar 

  28. Jubb, J.E.M.; Phillips, I.G.; Becker, H.: Interrelation of structural stability, stiffness, residual stress and natural frequency. J. Sound Vib. 39, 121–134 (1975). https://doi.org/10.1016/S0022-460X(75)80212-4

    Article  Google Scholar 

  29. Kaldas, M.M.; Dickinson, S.M.: Vibration and buckling calculations for rectangular plates subject to complicated in-plane stress distributions by using numerical integration in a Rayleigh–Ritz analysis. J. Sound Vib. 75, 151–162 (1981). https://doi.org/10.1016/0022-460X(81)90336-9

    Article  MATH  Google Scholar 

  30. Gray, T.; Camilleri, D.; McPherson, N.: Control of Welding Distortion in Thin-Plate Fabrication, 1st edn. Woodhead Publishing Limited, Cambridge (2014)

    Google Scholar 

  31. Javadi, Y.; Smith, M.C.; Abburi Venkata, K.; Naveed, N.; Forsey, A.N.; Francis, J.A.; Ainsworth, R.A.; Truman, C.E.; Smith, D.J.; Hosseinzadeh, F.; Gungor, S.; Bouchard, P.J.; Dey, H.C.; Bhaduri, A.K.; Mahadevan, S.: Residual stress measurement round robin on an electron beam welded joint between austenitic stainless steel 316L(N) and ferritic steel P91. Int. J. Press. Vessels Pip. 154, 41–57 (2017). https://doi.org/10.1016/j.ijpvp.2017.06.002

    Article  Google Scholar 

  32. Xu, J.; Chen, J.; Duan, Y.; Yu, C.; Chen, J.; Lu, H.: Comparison of residual stress induced by TIG and LBW in girth weld of AISI 304 stainless steel pipes. J. Mater. Process. Technol. 248, 178–184 (2017). https://doi.org/10.1016/j.jmatprotec.2017.05.014

    Article  Google Scholar 

  33. Cullity, B.D.; Stock, S.R.: Elements of X-Ray Diffraction, 3rd edn. Pearson Education India, New Delhi (2014)

    Google Scholar 

  34. Rosenthal, D.: Mathematical theory of heat distribution during welding and cutting. Weld. J. 20, 220–233 (1941)

    Google Scholar 

  35. Rosenthal, D.: The theory of moving sources of heat and its application to metal treatments. Trans. Am. Soc. Mech. Eng. 68, 849–866 (1946)

    Google Scholar 

  36. Goldak, J.; Chakravarti, A.; Bibby, M.: A new finite element model for welding heat sources. Metall. Mater. Trans. B 15, 299–305 (1984). https://doi.org/10.1007/BF02667333

    Article  Google Scholar 

  37. Chang, W.S.; Na, S.J.: Prediction of laser-spot-weld shape by numerical analysis and neural network. Metall. Mater. Trans. B 32, 723–731 (2001). https://doi.org/10.1007/s11663-001-0126-3

    Article  Google Scholar 

  38. Prof. Gandham Phanikumar, Analysis and Modeling of Welding (Video), Heat sources part 2/2, NPTEL Video Lect. (2016). http://nptel.ac.in/courses/113106067/4

  39. Luo, Y.; You, G.; Ye, H.; Liu, J.: Simulation on welding thermal effect of AZ61 magnesium alloy based on three-dimensional modeling of vacuum electron beam welding heat source. Vacuum 84, 890–895 (2010). https://doi.org/10.1016/j.vacuum.2009.12.005

    Article  Google Scholar 

  40. Das, D.; Pratihar, D.K.; Roy, G.G.: Electron beam melting of steel plates: temperature measurement using thermocouples and prediction through finite element analysis. In: Mandal, D.K., Syan, C.S. (eds.) CAD/CAM, Robotics and Factories of the Future, pp. 579–588. Springer, New Delhi (2016). https://doi.org/10.1007/978-81-322-2740-3_57

    Chapter  Google Scholar 

  41. Podder, D.; Kenno, S.; Das, S.; Mandal, N.R.: Numerical investigation on interruption in the welding process used in shipbuilding. J. Ship Prod. Des. 31, 220–229 (2015). https://doi.org/10.5957/JSPD.31.1.140005

    Article  Google Scholar 

  42. Gery, D.; Long, H.; Maropoulos, P.: Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding. J. Mater. Process. Technol. 167, 393–401 (2005). https://doi.org/10.1016/j.jmatprotec.2005.06.018

    Article  Google Scholar 

  43. Das, D.; Pratihar, D.K.; Roy, G.G.: Cooling rate predictions and its correlation with grain characteristics during electron beam welding of stainless steel. Int. J. Adv. Manuf. Technol. (2018). https://doi.org/10.1007/s00170-018-2095-6

    Article  Google Scholar 

  44. Ranjbarnodeh, E.; Serajzadeh, S.; Kokabi, A.H.; Fischer, A.: Effect of welding parameters on residual stresses in dissimilar joint of stainless steel to carbon steel. J. Mater. Sci. 46, 3225–3232 (2011). https://doi.org/10.1007/s10853-010-5207-8

    Article  Google Scholar 

  45. Mohanty, S.; Laldas, C.K.; Roy, G.G.: A new model for keyhole mode laser welding using FLUENT. Trans. Indian Inst. Met. 65, 459–466 (2012). https://doi.org/10.1007/s12666-012-0151-8

    Article  Google Scholar 

  46. Shanmugam, N.S.; Buvanashekaran, G.; Sankaranarayanasamy, K.: Finite element simulation of Nd: YAG laser lap welding of AISI 304 stainless steel sheets. In: Arslan, O., Oprisan, S. (eds.) Recent Advances in Mechanical Engineering & Automatic Control, pp 174–179. Wseas LLC (2012)

  47. Kazemi, K.; Goldak, J.A.: Numerical simulation of laser full penetration welding. Comput. Mater. Sci. 44, 841–849 (2009). https://doi.org/10.1016/j.commatsci.2008.01.002

    Article  Google Scholar 

  48. Chakraborty, S.S.; Maji, K.; Racherla, V.; Nath, A.K.: Investigation on laser forming of stainless steel sheets under coupling mechanism. Opt. Laser Technol. 71, 29–44 (2015). https://doi.org/10.1016/j.optlastec.2015.02.013

    Article  Google Scholar 

  49. Cheng, P.J.; Lin, S.C.: Analytical model to estimate angle formed by laser. J. Mater. Process. Technol. 108, 314–319 (2001). https://doi.org/10.1016/S0924-0136(00)00858-X

    Article  Google Scholar 

  50. Zhan, Y.; Zhang, E.; Ge, Y.; Liu, C.: Residual stress in laser welding of TC4 titanium alloy based on ultrasonic laser technology. Appl. Sci. 8, 1997 (2018). https://doi.org/10.3390/app8101997

    Article  Google Scholar 

  51. Shokri, V.; Sadeghi, S.; Sadeghi, M.H.; Javadi, Y.: Effect of heat input ratio on residual stress in multipass welding using finite element method and ultrasonic stress measurement. J. Nondestruct. Eval. 34, 1–13 (2015). https://doi.org/10.1007/s10921-015-0301-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. A. K. Samantaray, Systems, Dynamics and Control Laboratory, Department of Mechanical Engineering, IIT Kharagpur, India, for allowing us to use the digital laser vibrometer, LabView software and other setups required to carry out the necessary experiments on the measurement of natural frequency of vibration of welded samples. The authors are also grateful to the research scholars, namely Mr. Sebin Jose and Mr. Pankaj Kumar from the Systems, Dynamics and Control Laboratory, Department of Mechanical Engineering, IIT Kharagpur, India, for their immense assistance and support. The authors are also thankful to Mr. Surajit Mondal and the other members from DRDL, Hyderabad, India, for valuable insight into stress measurement. In addition, the authors are thankful to Prof. S. Paul, Department of Mechanical Engineering, IIT Kharagpur, India, for allowing me to conduct stress measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Kumar Pratihar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D., Pratihar, D.K. & Roy, G.G. Establishing a Correlation Between Residual Stress and Natural Frequency of Vibration for Electron Beam Butt Weld of AISI 304 Stainless Steel. Arab J Sci Eng 45, 5769–5781 (2020). https://doi.org/10.1007/s13369-020-04560-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04560-0

Keywords

Navigation