Skip to main content

Advertisement

Log in

Sequence Stratigraphic Framework of the Jurassic Samana Suk Carbonate Formation, North Pakistan: Implications for Reservoir Potential

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The paper aims to establish a possible link between the sequence stratigraphy and reservoir potential of the Middle Jurassic carbonates of Samana Suk Formation, Kala Chitta Range, North Pakistan. The Samana Suk Formation is comprised of a monotonous sequence of thin- to thick-bedded bioturbated, cross-bedded, ripple marked, sandy, bioclastic carbonates with shale interbeds. The rock unit is the best analog of shallow to marginal marine carbonates due to its pronounced thickness, enhanced lithological variations, and diverse diagenetic features. To establish a possible link between the sequence stratigraphy and reservoir potential of the rock unit, the outcrop and petrographic features are used to record eight microfacies, deposited in a wide range of shallow to marginal marine environments including mudflats, lagoon, back shoals, and sand shoals. Based on the vertical stacking pattern of microfacies in a given time of deposition (170–160 Ma), one second-order local cycle (SLC-1), three regressive systems tracts (RSTs) and two transgressive systems tracts (TSTs) are delineated within the succession. The primary and secondary porosity of selected microfacies from each systems tracts are investigated using petrography, scanning electron microscopy, and energy-dispersive spectroscopy. The direct measurements of porosity and permeability of these microfacies types are carried out using high overburden pressure plug porosity and permeability analyses. Based on these investigations, higher reservoir potential is recorded for mudstones/wackestone microfacies of RST as compared to grainstone microfacies of TST. The higher porosity within RST and higher interconnectivity of available pores both in RST and in TST suggest that the Samana Suk Formation carries good reservoir potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Code Availability

Not applicable

References

  1. Flügel, E.: Microfacies of Carbonate Rocks: Analysis, Interpretation, vol. 1, pp. 1–996. Berlin and Heidelbert GmbH & Co., Berlin (2004)

    Book  Google Scholar 

  2. Morad, S.; Ketzer, J.; De Ros, L.F.: Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology 47, 95–120 (2000)

    Article  Google Scholar 

  3. Read, J.; Horbury, A.D.: Eustatic and tectonic controls on porosity evolution beneath sequence-bounding unconformities and parasequence disconformities on carbonate Platforms. In: Horbury, A., Robinson, A.G. (eds.) Diagenesis and Basin Development, pp. 155–197. AAPG, Tulsa (1993)

    Google Scholar 

  4. Tucker, M.E.: Carbonate diagenesis and sequence stratigraphy. In: Wright, P.V. (ed.) Sedimentology Review/1, pp. 51–72. Blackwell Scientific Publications, Oxford (1993)

  5. Morad, S.; Ketzer, J.; DeRos, L.: Linking diagenesis to sequence stratigraphy: an integrated tool for understanding and predicting reservoir quality distribution. Link. Diag. Seq. Stratigr. Spec. Publ. Int. Assoc. Sedimentol. 45, 1–36 (2012)

    Google Scholar 

  6. Hart, B.; Longstaffe, F.; Plint, A.: Evidence for relative sea level change from isotopic and elemental composition of siderite in the Cardium Formation, Rocky Mountain Foothills. Bull. Can. Pet. Geol. 40(1), 52–59 (1992)

    Google Scholar 

  7. Morad, S.: Carbonate cementation in sandstones: distribution patterns and geochemical evolution (Ed. S. Morad), Carbonate Cementation in Sandstones. Int. Assoc. Sedimentol. Spec. Publ. 26, 1–26 (1998)

    Google Scholar 

  8. Morad, S.; Al-Ramadan, K.; Ketzer, J.M.; De Ros, L.: The impact of diagenesis on the heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy. AAPG Bull. 94(8), 1267–1309 (2010)

    Article  Google Scholar 

  9. Cross, T.A.: Controls on Coal Distribution in Transgressive-Regressive Cycles. Upper Cretaceous, Western Interior (1988)

    Google Scholar 

  10. Whalen, M.T.; Eberli, G.P.; Van Buchem, F.S.; Mountjoy, E.W.; Homewood, P.W.: Bypass margins, basin-restricted wedges, and platform-to-basin correlation, Upper Devonian, Canadian Rocky Mountains: implications for sequence stratigraphy of carbonate platform systems. J. Sediment. Res. 70(4), 913–936 (2000)

    Article  Google Scholar 

  11. Posamentier, H.W.; Allen, G.P.: Siliciclastic Sequence Stratigraphy: Concepts and Applications, vol. 7. SEPM (Society for Sedimentary Geology) Tulsa, Oklahoma (1999)

    Book  Google Scholar 

  12. Tucker, M.E.; Wright, V.P.: Carbonate Sedimentology. Wiley, Berlin (2009)

    Google Scholar 

  13. Middlemiss, C.S.: The Geology of Hazara and the Black Mountain. Geological Survey, Peshawar (1896)

    Google Scholar 

  14. Latif, M.: Explanatory notes on the geology of southeastern Hazara to accompany the revised geological map. Jahrbuch der Geologischen Bundesanstalt Sonderband 15, 5–20 (1970)

    Google Scholar 

  15. Cotter, G.D.P.: The geology of the part of the Attock district west of longitude 72 45 E. Mem. Geol. Surv. India 55(2), 63–161 (1933)

    Google Scholar 

  16. Gee, E.R.: Further Note on the Age of the Saline Series of the Punjab and of Kohat. Pioneer Press, New York (1947)

    Google Scholar 

  17. Calkins, J.A.; Matin, A.A.: The geology and mineral resources of the Garhi Habibullah quadrangle and the Kakul area, Hazara District, Pakistan. United States Geological Survey, pp 2331–1258 (1973)

  18. Davis, W.M.: Origin of limestone caverns. Bull. Geol. Soc. Am. 41(3), 475–628 (1930)

    Article  Google Scholar 

  19. Shah, S.M.I.: Stratigraphy of Pakistan. Geol. Surv. Pak. Mem. 22, 265 (2009)

    Google Scholar 

  20. Qureshi, M.K.A.; Butt, A.A.; Ghazi, S.: Shallow shelf sedimentation of the Jurassic Samana Suk Limestone, Kala Chitta Range, Lesser Himalayas, Pakistan. Geol. Bull. Punjab Univ. 43, 1–14 (2008)

    Google Scholar 

  21. Nizami, A.R.; Sheikh, R.A.: Microfacies analysis and digenetic study of Samana Suk Formation, Chichali Nala Section, Surghar Range. Trans Indus Ranges, Pakistan. Geol. Bull. Punjab Univ. 42, 37–52 (2007)

    Google Scholar 

  22. Mertmann, D.; Ahmad, S.: Shinawari and Samana Suk Formations of the Surghar and Salt Ranges, Pakistan: facies and depositional environments. Zeitschrift der Deutschen Geologischen Gesellschaft 30, 5–17 (1994)

    Google Scholar 

  23. Bender, F.K.; Raza, H.A.: Geology of Pakistan. Beträge zur regionalen Geologie der Erde. Gebrüder Borntraeger Berlin 25 (1995)

  24. Fatmi, A.; Hyderi, I.; Anwar, M.: Occurrence of the Lower Jurassic Ammonoid Genus Bouleiceras from the Surghar Range with a Revised Nomenclature of the Mesozoic Rocks of the Salt Range and Trans Indus Ranges (Upper Indus Basin). Geol. Bull. Punjab Univ. 25, 38–46 (1990)

    Google Scholar 

  25. Hallam, A.; Maynard, J.: The iron ores and associated sediments of the Chichali formation (Oxfordian to Valanginian) of the Trans-Indus Salt Range, Pakistan. J. Geol. Soc. 144(1), 107–114 (1987)

    Article  Google Scholar 

  26. Hussain, H.S.; Fayaz, M.; Haneef, M.; Hanif, M.; Jan, I.U.; Gul, B.: Microfacies and diagenetic-fabric of the Samana Suk Formation at Harnoi Section, Abbottabad, Khyber Pakhtunkhwa, Pakistan. J. Himal. Earth Sci. 46(2), 41–53 (2013)

    Google Scholar 

  27. Ali, F.; Haneef, M.; Anjum, M.N.; Hanif, M.; Khan, S.: Microfacies analysis and sequence stratigraphic modeling of the Samana Suk Formation, Chichali Nala, Trans Indus Ranges, Punjab, Pakistan. J. Himal. Earth Sci. 46(1), 41–53 (2013)

    Google Scholar 

  28. Hayat, M.; ur Rahman, M.; Khan, N.A.; Ali, F.: Sedimentology, Sequence Stratigraphy and Reservoir Characterization of Samana Suk Formation Exposed in Namal Gorge Section, Salt Range, Mianwali, Punjab, Pakistan. Int. J. Econ. Environ. Geol. 7(1), 4–15 (2016)  

    Google Scholar 

  29. Shah, M.M.; Ahmed, W.; Ahsan, N.; Lisa, M.: Fault-controlled, bedding-parallel dolomite in the middle Jurassic Samana Suk Formation in Margalla Hill Ranges, Khanpur area (North Pakistan): petrography, geochemistry, and petrophysical characteristics. Arab. J. Geosci. 9(5), 405 (2016)

    Article  Google Scholar 

  30. Rowley, D.B.: Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet. Sci. Lett. 145(1–4), 1–13 (1996)

    Article  Google Scholar 

  31. Coward, M.P.; Butler, R.; Chambers, A.; Graham, R.; Izatt, C.; Khan, M.A.; Knipe, R.J.; Prior, D.; Treloar, P.J.; Williams, M.: Folding and imbrication of the Indian crust during Himalayan collision. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 326(1589), 89–116 (1988)

    Google Scholar 

  32. Yeats, R.S.; Hussain, A.: Timing of structural events in the Himalayan foothills of northwestern Pakistan. Geol. Soc. Am. Bull. 99(2), 161–176 (1987)

    Article  Google Scholar 

  33. Calkins, A.J.; Offield, W.T.; Abdullah, S.K.M.; Ali, S.T.: Geology of the southern Himalaya in Hazara, Pakistan and adjacent areas. In: US Geological Survey Professional Paper 716-C, pp. 29. Denver, Colorado (1975)

  34. Powell, C.M.: A speculative tectonic history of Pakistan and surroundings. Geodynamics of Pakistan (1979)

  35. Kadri, I.B.: Petroleum Geology of Pakistan. Pakistan Petroleum Limited (1995)

  36. DiPietro, J.A.; Pogue, K.R.: Tectonostratigraphic subdivisions of the Himalaya: a view from the west. Tectonics 23(5), 510–525 (2004)

    Article  Google Scholar 

  37. Meigs, A.J.; Burbank, D.W.; Beck, R.A.: Middle-late Miocene (> 10 Ma) formation of the Main Boundary thrust in the western Himalaya. Geology 23(5), 423–426 (1995)

    Article  Google Scholar 

  38. Iqbal, S.; Jan, I.U.; Akhter, M.G.; Bibi, M.: Palaeoenvironmental and sequence stratigraphic analyses of the Jurassic Datta Formation, Salt Range, Pakistan. J. Earth Syst. Sci. 124(4), 747–766 (2015)

    Article  Google Scholar 

  39. Ali, F.; Ahmad, S.; Khan, S.; Hanif, M.; Qiang, J.: Toarcian-Bathonian palynostratigraphy and anoxic event in Pakistan: an organic geochemical study. Stratigraphy 15(3), 225–243 (2018)

    Article  Google Scholar 

  40. Khan, S.: Biostratigraphy and microfacies of the cretaceous sediments in the Indus Basin, Pakistan. Doctoral Dissertation, University of Edinburgh, Edinburgh, UK (2013)

  41. Ullah, A.: Lithofacies properties, biostratigraphy, cyclicity and depositional environment of the Margala Hill Limestone, Hazara Basin, Northern Pakistan. Faculty of Graduate Studies and Research, University of Regina (2017)

  42. Mughal, M.S.; Zhang, C.; Du, D.; Zhang, L.; Mustafa, S.; Hameed, F.; Khan, M.R.; Zaheer, M.; Blaise, D.: Petrography and provenance of the Early Miocene Murree Formation, Himalayan Foreland Basin, Muzaffarabad, Pakistan. J. Asian Earth Sci. 162, 25–40 (2018)

    Article  Google Scholar 

  43. Dunham, R.J.: Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (ed.) Classification of Carbonate Rocks. 1st ed. Memoir American Association of Petroleum (1962)

  44. Bacelle, L.; Bosellini, A.: Diagrams for visual estimation of percentage composition in sedimentary rocks [Diagrammi per la stima visiva della composizione percentualle nelle rocce sedimentarie]. Ann. Univ. Ferrara NS sez. IX., Sci. Geol. Paleont, 1, 59–62 (1965)

  45. Wilson, J.L.: The Lower Carboniferous Waulsortian Facies. Carbonate Facies in Geologic History, pp. 148–168. Springer, Berlin (1975)

    Book  Google Scholar 

  46. Nizami, A.R.: Sedimentology of the middle Jurassic Samana Suk Formation in Trans Indus Ranges Pakistan. Ph.D., University of Punjab, Lahore, Pakistan (2008)

  47. Cheema, A.H.: Microfacies, diagenesis and depositional environments of Samana Suk formation (Middle Jurassic) Carbonates exposed in South East Hazara and Samana Range. Ph.D., University of the Punjab, Lahore, Pakistan (2010)

  48. Scholle, P.A.; Ulmer-Scholle, D.S.: A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. AAPG Memoir 77. America: AAPG (2003)

  49. Tucker, M.E.; Wright, V.P.: Carbonate platforms: facies evolution and sequences. Int. Ass. Sed. 2, 328 (1990)

    Google Scholar 

  50. Davis, R.A.: Depositional Systems: A Genetic Approach to Sedimentary Geology. Prentice Hall, Berlin (1983)

    Google Scholar 

  51. Adams, A.; MacKenzie, I.: Carbonate Sediments and Rocks Under the Microscope: A Colour Atlas. CRC Press, Coca Raton (1998)

    Book  Google Scholar 

  52. Alsharhan, A.; Kendall, C.S.C.: Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues. Earth Sci. Rev. 61(3–4), 191–243 (2003)

    Article  Google Scholar 

  53. Halley, R.B.; Schmoker, J.W.: High-porosity Cenozoic carbonate rocks of south Florida: progressive loss of porosity with depth. AAPG Bull. 67(2), 191–200 (1983)

    Google Scholar 

  54. Miall, A.D.: Whither stratigraphy? Sed. Geol. 100(1–4), 5–20 (1995)

    Article  Google Scholar 

  55. Catuneanu, O.; Abreu, V.; Bhattacharya, J.; Blum, M.; Dalrymple, R.; Eriksson, P.; Fielding, C.R.; Fisher, W.L.; Galloway, W.E.; Gibling, M.: Reply to the comments of W. Helland-Hansen on “Towards the standardization of sequence stratigraphy” by Catuneanu et al.[Earth-Sciences Review 92 (2009), pp. 1–33] (2009).

  56. Vail, P.R.; Hardenbol, J.; Todd, R.G.: Jurassic unconformities, chronostratigraphy and sea-level changes from seismic stratigraphy and biostratigraphy. In: Schlee, J.S. (ed.) Interregional Unconformities and Hydrocarbon Accumulation. American Association of Petroleum Geologists Memoir, pp. 129–144 (1984)

  57. Posamentier, H.; James, D.: An overview of sequence-stratigraphic concepts: uses and abuses. In: Posamentier, H. (ed.) Sequence Stratigraphy and Facies Associations, vol. 18, pp. 3–18. Blackwell, Oxford (1993)

    Chapter  Google Scholar 

  58. Spence, G.H.; Tucker, M.E.: Modeling carbonate microfacies in the context of high-frequency dynamic relative sea-level and environmental changes. J. Sediment. Res. 69(4), 947–961 (1999)

    Article  Google Scholar 

  59. Embry, A.F.; Johannessen, E.P.: Two approaches to sequence stratigraphy. Stratigr. Timescales 2, 85–118 (2017)

    Article  Google Scholar 

  60. Haq, B.U.; Hardenbol, J.; Vail, P.R.: Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level changes. In; Wilgus, C.K. et al. (eds.) Sea-Level Changesóan Integrated Approach 42, pp. 71–108. SEMP Special Publication, Houston (1988)

  61. James, N.P.: Shallowing-upward sequences in carbonates. Facies and Models (2nd edition) 1, 213–228 (1984)

  62. Wright, V.: Peritidal carbonate facies models: a review. Geol. J. 19(4), 309–325 (1984)

    Article  Google Scholar 

  63. Hallam, A.: A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr. Palaeoclimatol. Palaeoecol. 167(1–2), 23–37 (2001)

    Article  Google Scholar 

  64. Jacquin, T.; Rusciadelli, G.; Amedro, F.; de Graciansky, P.-C.; Magniez-Jannin, F.: The North Atlantic cycle: an overview of 2nd-Order Trangressive/Regressive Facies Cycles in the Lower Cretaceous of Western Europe (1998)

  65. Legarreta, L.; Uliana, M.A.: The Jurassic succession in west-central Argentina: stratal patterns, sequences and paleogeographic evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 120(3–4), 303–330 (1996)

    Article  Google Scholar 

  66. Surlyk, F.: Sequence stratigraphy of the jurassic-lowermost cretaceous of east greenland (1). AAPG Bull. 75(9), 1468–1488 (1991)

    Google Scholar 

  67. Riccardi, A.C.: Scaphitids from the Upper Campanian–Lower Maastrichtian Bearpaw Formation of the western interior of Canada, vol. 354. Geological Survey of Canada (1983)

  68. Ahr, W.M.: Geology of Carbonate Reservoir: The Identification, Description, and Characterization of Hydrocarbon Reservoirs. Wiley, New York (2008)

    Book  Google Scholar 

  69. Warme, J.E.: Jurassic carbonate facies of the central and eastern High Atlas rift, Morocco. In: Jacobshagen, V.H. (ed.) The Atlas System of Morocco, pp. 169–199. Springer, Berlin (1988)

    Chapter  Google Scholar 

  70. Ayyýldýz, T.; Tekin, E.; Friedman, G.M.: Microtextural properties of ooids in the middle Jurassic-lower Cretaceous, central taurus carbonate platform, Antalya, Turkey. Carbonates Evaporites 16(1), 1–7 (2001)

    Article  Google Scholar 

  71. Morettini, E.; Santantonio, M.; Bartolini, A.; Cecca, F.; Baumgartner, P.; Hunziker, J.: Carbon isotope stratigraphy and carbonate production during the Early-Middle Jurassic: examples from the Umbria–Marche–Sabina Apennines (central Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 184(3–4), 251–273 (2002)

    Article  Google Scholar 

  72. Rousseau, M.; Dromart, G.; Garcia, J.-P.; Atrops, F.; Guillocheau, F.: Jurassic evolution of the Arabian carbonate platform edge in the central Oman Mountains. J. Geol. Soc. 162(2), 349–362 (2005)

    Article  Google Scholar 

  73. Gómez, J.; Fernández-López, S.R.: The Iberian Middle Jurassic carbonate-platform system: synthesis of the palaeogeographic elements of its eastern margin (Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 236(3–4), 190–205 (2006)

    Article  Google Scholar 

  74. Čadjenović, D.; Kilibarda, Z.; Radulović, N.: Late Triassic to Late Jurassic evolution of the Adriatic carbonate platform and Budva Basin, southern Montenegro. Sed. Geol. 204(1–2), 1–17 (2008)

    Article  Google Scholar 

  75. Delmas, J.; Brosse, E.; Houel, P.: Petrophysical properties of the middle Jurassic carbonates in the PICOREF sector (South Champagne, Paris Basin, France). Oil Gas Sci. Technol. Revue de l’Institut Français du Pétrole 65(3), 405–434 (2010)

    Article  Google Scholar 

  76. Han, Z.; Hu, X.; Li, J.; Garzanti, E.: Jurassic carbonate microfacies and relative sea-level changes in the Tethys Himalaya (southern Tibet). Palaeogeogr. Palaeoclimatol. Palaeoecol. 456, 1–20 (2016)

    Article  Google Scholar 

  77. Alsharhan, A.; Nairn, A.: The Late Permian carbonates (Khuff Formation) in the western Arabian Gulf: its hydrocarbon parameters and paleogeographical aspects. Carbonates Evaporites 9(2), 132 (1994)

    Article  Google Scholar 

  78. Alsharhan, A.S.; Magara, K.: Nature and distribution of porosity and permeability in Jurassic carbonate reservoirs of the Arabian Gulf Basin. Facies 32(1), 237–253 (1995)

    Article  Google Scholar 

  79. Nairn, A.; Alsharhan, A.: Sedimentary Basins and Petroleum Geology of the Middle East. Elsevier, Berlin (1997)

    Google Scholar 

  80. Sudarsana, A.; Abdelouahab, M.; Chanpong, R.; Fryer, V.I.; Hall, J.; Vizcarra, E.: A Mid-Jurassic carbonate reservoir case study, Offshore Qatar: how to capture high permeable streaks in a 3D reservoir model. In: International Petroleum Technology Conference 2009. International Petroleum Technology Conference

Download references

Acknowledgements

The authors are thankful to the State Key Laboratory of Continental Dynamics, Northwest University, China, for providing facilities to carry out laboratory analysis. Authors are also thankful to the Department of Geology, University of Swabi and Department of Geology, University of Peshawar, Pakistan, for support and help. Thanks are extended to Mr. Hikmat Salam, Mr. Ali Rahman, Mr. Zhang Dongdong, Mr. Yang Kang, Mr. Zhang Weijie, and Ms. Peng Yifeng for their help and support during the field and laboratory work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of Data and Materials

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadood, B., Khan, S., Li, H. et al. Sequence Stratigraphic Framework of the Jurassic Samana Suk Carbonate Formation, North Pakistan: Implications for Reservoir Potential. Arab J Sci Eng 46, 525–542 (2021). https://doi.org/10.1007/s13369-020-04654-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04654-9

Keywords

Navigation