Skip to main content
Log in

Mixed Convective Magneto Flow of SiO2–MoS2/C2H6O2 Hybrid Nanoliquids Through a Vertical Stretching/Shrinking Wedge: Stability Analysis

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Hybrid nanoliquid as an expansion of nanoliquid is acquired by scattering combination of nano-powder or numerous distinct nanomaterials in the regular liquid. Hybrid nanofluids are impeding fluids which furnish better performance of heat transport and thermo-physical properties than convectional heat transport fluids (ethylene glycol, water and oil) and nanofluids with single material. At this juncture, a sort of hybrid nanofluid comprising nano-size materials through an ethylene glycol as a regular liquid is modeled to expand the magnetic impact on the mixed convection flow through a shrinking/stretched wedge. The impacts of Joule heating and viscous dissipation are also revealed. The PDEs which governed the flow problem with heat transport are changed into a dimensionless ODEs system through a similarity technique. Then these equations are numerically exercised by utilizing bvp4c solver. The impact of emerging constraints on the flow field with heat transport is discussed with the aid of plots. Also, the stability analysis is implemented to classify which result is physically reliable and stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\(U_{0}\), \(U_{\infty }\) :

Constants

\(B_{0}\) :

Magnetic field strength

\(C_{{\text{F}}}\) :

Skin friction coefficient

\(c_{{\text{p}}}\) :

Specific heat

\({\text{Ec}}\) :

Eckert number

\(f\) :

Dimensionless velocity

\(g\) :

Gravity acceleration

\({\text{Gr}}_{x}\) :

Grashof number

\(k\) :

Thermal conductivity

\(M\) :

Magnetic number

\(m\) :

Falkner–Skan power-law parameter

\({\text{Nu}}_{x}\) :

Nusselt number

\({\Pr}\) :

Prandtl number

\({\text{Re}}_{x}\) :

Local Reynolds number

\(s\) :

Suction parameter

\(T\) :

Temperature

\(T_{{\text{w}}} (x)\) :

Wall temperature

\(T_{\infty }\) :

Ambient temperature

\(\theta\) :

Dimensionless temperature

\(\left( {u,v} \right)\) :

Velocity components

\(u_{{\text{w}}} (x)\) :

Stretching velocity

\(u_{\infty } (x)\) :

Free stream velocity

\(v_{{\text{w}}}\) :

Mass flux velocity

\(\left( {x,y} \right)\) :

Cartesian coordinates

\(\alpha\) :

Thermal diffusivity

\(\beta\) :

Thermal expansion

\(\beta_{1}\) :

Hartree of pressure

\(\varepsilon\) :

Wall thickness parameter

\(\lambda\) :

Stretching/shrinking parameter

\(\lambda_{1}\) :

Mixed convection parameter

\(\varsigma\) :

Growth and decay distribution parameter

\(\mu\) :

Dynamic viscosity

\(\Omega\) :

Angle

\(\phi_{1} ,\phi_{2}\) :

The volume fraction of nanoparticles

\(\nu_{{\text{f}}}\) :

Kinematic viscosity of the base fluid

\(\rho\) :

Density

\(\sigma\) :

The electrical conductivity

\(\tau\) :

Dimensionless variable

\(\left( {\rho c_{{\text{p}}} } \right)\) :

Heat capacity

\(\psi\) :

Stream function

\(\eta\) :

Similarity variable

f :

Base fluid

s 1 ,s 2 :

Solid nanoparticles

nf:

Nanofluid

hnf:

Hybrid nanofluid

w :

Wall boundary condition

\(\infty\) :

Free-stream condition

‘:

Derivative w.r.t. \(\eta\)

References

  1. Das, P.K.: A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J. Mol. Liq. 240, 420–446 (2017)

    Google Scholar 

  2. Sarkar, J., Ghosh, P., Adil, A.: A review on hybrid nanofluids: recent research, development and applications. Renew. Sust. Energy Rev. 43, 164–177 (2015)

    Google Scholar 

  3. Sidik, N.A.C., Jamil, M.M., Aziz Japar, W.M.A., Adamu, I.M.: A review on preparation methods, stability and applications of hybrid nanofluids. Renew. Sust. Energy Rev. 80, 1112–1122 (2017)

    Google Scholar 

  4. Senthilaraja, S., Vijayakumar, K., Ganadevi, R.: A comparative study on thermal conductivity of Al2O3/water, CuO/water and Al2O3–CuO/water nanofluids. Digest J. Nanomat. Biostruc. 10, 1449–1458 (2015)

    Google Scholar 

  5. Toghraie, D., Chaharsoghi, V.A., Afrand, M.: Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid Effects of temperature and nanoparticles concentration. J. Therm. Anal. Calorim. 125, 527–535 (2016)

    Google Scholar 

  6. Adriana, M.A.: Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches. Int. J. Heat Mass Transf. 104, 852–860 (2017)

    Google Scholar 

  7. Maraj, E.N., Iqbal, Z., Azhar, E., Mehmood, Z.: A comprehensive shape factor analysis using transportation of MoS2-SiO2/H2O inside an isothermal semi vertical inverted cone with porous boundary. Res. Phys. 8, 633–641 (2018)

    Google Scholar 

  8. Rostami, M.N., Dinarvand, S., Pop, I.: Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina hybrid nanofluid. Chin. J. Phys. 56(5), 2465–2478 (2018)

    Google Scholar 

  9. Mackolil, J., Mahanthesh, B.: Time-dependent nonlinear convective flow and radiative heat transfer of Cu-Al2O3-H2O hybrid nanoliquid with polar particles suspension: a statistical and exact analysis. BioNanoSci. 9, 937–951 (2019)

    Google Scholar 

  10. Shruthy, M., Mahanthesh, M.: Rayleigh-Bénard convection in Casson and hybrid nanofluids: an analytical investigation. J. Nanofluids 8(1), 222–229 (2019)

    Google Scholar 

  11. Ghadikolaei, S.S., Gholinia, M., Hoseini, M.E., Ganji, D.D.: Natural convection MHD flow due to MoS2–Ag nanoparticles suspended in C2H6O2–H2O hybrid base fluid with thermal radiation. J. Taiwan Inst. Chem. Eng. 97, 12–23 (2019)

    Google Scholar 

  12. Mackolil, J., Mahanthesh, B.: Sensitivity analysis of radiative heat transfer in Casson and nano fluids under diffusion-thermo and heat absorption effects. Eur. Phys. J. Plus 134, 619 (2019)

    Google Scholar 

  13. Mahanthesh, B.: Statistical and exact analysis of MHD flow due to hybrid nanoparticles suspended in C2H6O2-H2O hybrid base fluid. Math. Methods Eng. Appl. Sci. Chapter 8, 1–44 (2020)

    Google Scholar 

  14. Ashlin, T.S., Mahanthesh, B.: Exact solution on non-coaxial rotating and nonlinear convective flow of Cu-Al2O3-H2O hybrid nanofluids over an infinite vertical plate subjected to heat source and radiative heat. J. Nanofluids 8(4), 781–794 (2019)

    Google Scholar 

  15. Thriveni, K., Mahanthesh, B.: Sensitivity analysis of nonlinear radiated heat transport of hybrid nanoliquid in an annulus subjected to the nonlinear Boussinesq approximation. J. Therm. Anal. Cal. (2020). https://doi.org/10.1007/s10973-020-09596-w

    Article  Google Scholar 

  16. Falkner, V.M., Skan, S.W.: Some approximate solutions of the boundary layer equations. Phil. Mag. 80(12), 865–896 (1931)

    MATH  Google Scholar 

  17. Hartree, D.R.: On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer. Math. Proc. Cambridge Philos. Soc. 33(2), 223–239 (1937)

    MATH  Google Scholar 

  18. Koh, J.C.Y., Hartnett, J.P.: Skin friction and heat transfer for incompressible laminar flow over porous wedges with suction and variable wall temperature. Int. J. Heat Mass Transf. 2(3), 185–198 (1961)

    Google Scholar 

  19. Postelnicu, A., Pop, I.: Falkner-Skan boundary layer flow of a power-law fluid past a stretching wedge. Appl. Math. Comp. 217, 4359–4368 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Su, X., Zheng, L., Zhang, X., Zhang, J.: MHD mixed convective heat transfer over a permeable stretching wedge with thermal radiation and ohmic heating. Chem. Eng. Sci. 78, 1–8 (2012)

    Google Scholar 

  21. Yang, X.-J., Tenreiro Machado, J.A.: A new fractional operator of variable order: Application in the description of anomalous diffusion. Phys. A: Stat. Mech. Appl. 481, 276–283 (2017)

    MathSciNet  Google Scholar 

  22. Yang, X.-J., Gao, F.: A new technology for solving diffusion and heat equations. Thermal Sci. 21, 133–140 (2017)

    Google Scholar 

  23. Zaib, A., Rashidi, M.M., Chamkha, A.J.: Flow of nanofluid containing gyrotactic microorganisms over static wedge in Darcy-Brinkmn porous medium with convective boundary condition. J. Porous Media 21(10), 911–928 (2018)

    Google Scholar 

  24. Yang, X.-J.: General Fractional Derivatives Theory, Methods and Applications, 1st Edition (2019)

  25. Yang, X.-J.: Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat transfer problems. Thermal Sci. 21(3), 1161–1171 (2019)

    Google Scholar 

  26. Yang, X.-J., Gao, F., Ju, Y., Zhou, H.-W.: Fundamental solutions of the general fractional-order diffusion equations. Math. Methods Appl. Sci. 41(18), 9312–9320 (2018). https://doi.org/10.1002/mma.5341

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, X.J., Feng, Y.Y., Cattani, C.: Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Math. Methods Appl. Sci. 42(11), 4054–4060 (2019). https://doi.org/10.1002/mma.5634

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, X.-J., Gao, F., Ju, Y.: General Fractional Derivatives with Applications in Viscoelasticity, 1st edition (2020). https://doi.org/10.1016/C2018-0-01749-1

  29. Nadeem, S., Ahmad, S., Muhammad, N.: Computational study of Falkner-Skan problem for a static and moving wedge. Sensors Actuat. B: Chem. 263, 69–76 (2018)

    Google Scholar 

  30. Mebarek-Oudina, F., Bessaïh, R.: Numerical simulation of natural convection heat transfer of copper-water nanofluid in a vertical cylindrical annulus with heat sources. Thermophys. Aeromech. 26(3), 325–334 (2019)

    Google Scholar 

  31. Mebarek-Oudina, F.: Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete, heat source. Heat Transfer-Asian Res. 48(1), 135–147 (2019)

    Google Scholar 

  32. Marzougui, S., Mebarek-Oudina, F., Aissa, A., Magherbi, M., Shah, Z., Ramesh, K.: Entropy generation on magneto-convective flow of copper-water nanofluid in a cavity with chamfers. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09662-3

    Article  Google Scholar 

  33. Raza, J., Mebarek-Oudina, F., Ram, P., Sharma, S.: MHD flow of non-Newtonian molybdenum disulfide nanofluid in a converging/diverging channel with Rosseland radiation. Defect. Diffus. Forum 401, 92–106 (2020). https://doi.org/10.4028/www.scientific.net/DDF.401.92

    Article  Google Scholar 

  34. Mahanthesh, B., Lorenzini, G., Mebarek-Oudina, F., Animasaun, I.L.: Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08985-0

    Article  Google Scholar 

  35. Raza, J., Mebarek-Oudina, F., Mahanthesh, B.: Magnetohydrodynamic flow of nano Williamson fluid generated by stretching plate with multiple slips. Multidiscipline Modeling Materials Struct. 15(5), 871–894 (2019)

    Google Scholar 

  36. Devi, S.S.U., Devi, S.P.A.: Heat transfer enhancement of Cu−Al2O3/water hybrid nanofluid flow over a stretching sheet. J. Niger. Math. Soc. 36, 419–433 (2017)

    Google Scholar 

  37. Hayat, T., Nadeem, S.: Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys. 7, 2317–2324 (2017)

    Google Scholar 

  38. Xie, H., Jiang, B., Liu, B., Wang, Q., Xu, J., Pan, F.: An investigation on the tribological performances of the SiO2-MoS2 hybrid nanofluids for magnesium alloy-steel contacts. Nanoscale Res. Lett. 11, 329–336 (2016)

    Google Scholar 

  39. Daswita, L., Nazar, R., Ishak, A., Ahmad, R., Pop, I.: Mixed convection boundary layer flow past a wedge with permeable walls. Heat Mass Transf. 46, 1013–1018 (2010)

    Google Scholar 

  40. Ishak, A., Nazar, R., Pop, I.: MHD boundary-layer flow of a micropolar fluid past a wedge with constant wall heat flux. Commun. Nonlinear Sci. Num. Simul. 14, 109–118 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Raza, J., Mebarek-Oudina, F., Chamkha, A.J.: Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects. Multidiscip. Model. Mater. Struct. 15(4), 737–757 (2019)

    Google Scholar 

  42. Farhan, M.; Omar, Z.; Mebarek-Oudina, F.; Raza, J.; Shah, Z.; Choudhari, R.V.; Makinde, O.D.: Implementation of one step one hybrid block method on nonlinear equation of the circular sector oscillator. Comput. Math. Model. 31(1), 116–132 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Hamrelaine, S., Mebarek-Oudina, F., Sari, M.R.: Analysis of MHD Jeffery Hamel flow with suction/injection by homotopy analysis method. J. Adv. Res. Fluid Mech. Therm. Sci. 58(2), 173–186 (2019)

    Google Scholar 

  44. Mebarek-Oudina, F.: Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths. Eng. Sci. Technol. Int. J. 20(4), 1324–1333 (2017). https://doi.org/10.1016/j.jestch.2017.08.003

    Article  Google Scholar 

  45. Gourari, S., Mebarek-Oudina, F., Hussein, A.K., Kolsi, L., Hassen, W., Younis, O.: Numerical study of natural convection between two coaxial inclined cylinders. Int. J. Heat Technol. 37(3), 779–786 (2019). https://doi.org/10.18280/ijht.370314

    Article  Google Scholar 

  46. Laouira, H., Mebarek-Oudina, F., Hussein, A.K., Kolsi, L., Merah, A., Younis, O.: Heat transfer inside a horizontal channel with an open trapezoidal enclosure subjected to a heat source of different lengths. Heat Transfer-Asian Res. 49(1), 406–423 (2020)

    Google Scholar 

  47. Merkin, J.H.: On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 20(2), 171–179 (1986)

    MathSciNet  MATH  Google Scholar 

  48. Sharma, R., Ishak, A., Pop, I.: Stability analysis of magnetohydrodynamic stagnation-point flow toward a stretching/shrinking sheet. Comp. Fluids 102, 94–98 (2014)

    Google Scholar 

  49. Weidman, P.D., Kubitschek, D.G., Davis, A.M.J.: The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci. 44(11–12), 730–737 (2006)

    MATH  Google Scholar 

  50. Chamkha, A.J., Mujtaba, M., Quadri, A., Issa, C.: Thermal radiation effects on MHD forced convection flow adjacent to a non-isothermal wedge in the presence of a heat source or sink. Heat Mass Transf. 39, 305–312 (2003)

    Google Scholar 

  51. Yacob, N.A., Ishak, A., Pop, I.: Falkner-Skan problem for a static or moving wedge in nanofluids. Int. J. Therm. Sci. 2(50), 133–139 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fateh Mebarek-Oudina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, U., Zaib, A. & Mebarek-Oudina, F. Mixed Convective Magneto Flow of SiO2–MoS2/C2H6O2 Hybrid Nanoliquids Through a Vertical Stretching/Shrinking Wedge: Stability Analysis. Arab J Sci Eng 45, 9061–9073 (2020). https://doi.org/10.1007/s13369-020-04680-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04680-7

Keywords

Navigation