Skip to main content
Log in

Dry Machining Performance of AA7075-T6 Alloy Using Uncoated Carbide and MT-CVD TiCN-Al2O3-Coated Carbide Inserts

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present study examines dry machining performance of AA7075 T6 alloy using uncoated and MT-CVD TiCN–Al2O3-coated carbide inserts. Machining performance is assessed with regard to tangential cutting force, tool tip temperature and depth of flank wear. The performance of coated tool is compared to that of uncoated insert. In addition, different modes of tool wear and chip morphology are studied in detail. It is experienced that coated tool causes lower tool tip temperature and lesser flank wear than untreated counterpart. Apart from abrasion, adhesion and built-up layer formation; attrition wear is distinctly visible in case of uncoated tool. On the contrary, in addition to common wear modes, coated tool also experiences diffusion wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mandal, K.K.; Kuar, A.S.; Mitra, S.: Experimental investigation on laser micro-machining of Al 7075 Alloy. Opt. Laser Technol. 107, 260–267 (2018)

    Article  Google Scholar 

  2. Davis, J.R.: ASM Speciality Handbook: Aluminium and Aluminium Alloys. ASM International, Materials Park (1993)

    Google Scholar 

  3. Wright, P.K.; Trent, E.M.: Metal Cutting, 4th edn. Butterworth-Heinemann, Burlington (2000)

    Google Scholar 

  4. Tan, E.; Ögel, B.: Influence of heat treatment on the mechanical properties of AA6066 alloy. Turk. J. Eng. Environ. Sci. 31(1), 53–60 (2007)

    Google Scholar 

  5. Tang, Z.T.; Liu, Z.Q.; Pan, Y.Z.; Wan, Y.; Ai, X.: The influence of tool flank wear on residual stresses induced by milling aluminum alloy. J. Mater. Process. Technol. 209(9), 4502–4508 (2009)

    Article  Google Scholar 

  6. Kannan, S.; Kishawy, H.A.: Tribological aspects of machining aluminium metal matrix composites. J. Mater. Process. Technol. 198(1–3), 399–406 (2008)

    Article  Google Scholar 

  7. Kelly, J.F.; Cotterell, M.G.: Minimal lubrication machining of aluminium alloys. J. Mater. Process. Technol. 120(1–3), 327–334 (2002)

    Article  Google Scholar 

  8. Ozcatalbas, Y.: Chip and built-up edge formation in the machining of in situ Al4C3–Al composite. Mater. Des. 24(3), 215–221 (2003)

    Article  Google Scholar 

  9. Fang, N.; Yang, J.; Liu, N.: Analytical predictive modeling of serrated chip formation in high speed machining of 7075-T6 aluminum alloy. In: Proceedings of ASME 2004 International Mechanical Engineering Congress and Exposition, November 13–19, 2004, Anaheim, California, USA.

  10. List, G.; Nouari, M.; Géhin, D.; Gomez, S.; Manaud, J.P.; Le Petitcorps, Y.; Girot, F.: Wear behaviour of cemented carbide tools in dry machining of aluminium alloy. Wear 259(7–12), 1177–1189 (2005)

    Article  Google Scholar 

  11. Sánchez, J.M.; Rubio, E.; Álvarez, M.; Sebastián, M.A.; Marcos, M.: Microstructural characterisation of material adhered over cutting tool in the dry machining of aerospace aluminium alloys. J. Mater. Process. Technol. 164, 911–918 (2005)

    Article  Google Scholar 

  12. Rubio, E.M.; Camacho, A.M.; Sánchez-Sola, J.M.; Marcos, M.: Chip arrangement in the dry cutting of aluminium alloys. J. Achiev. Mater. Manuf. Eng. 16(1–2), 164–170 (2006)

    Google Scholar 

  13. Castro, G.; Almeida, F.A.; Oliveira, F.J.; Fernandes, A.J.S.; Sacramento, J.; Silva, R.F.: Dry machining of silicon–aluminium alloys with CVD diamond brazed and directly coated Si3N4 ceramic tools. Vacuum 82(12), 1407–1410 (2008)

    Article  Google Scholar 

  14. Roy, P.; Sarangi, S.K.; Ghosh, A.; Chattopadhyay, A.K.: Machinability study of pure aluminium and Al–12% Si alloys against uncoated and coated carbide inserts. Int. J. Refract. Metal Hard Mater. 27(3), 535–544 (2009)

    Article  Google Scholar 

  15. Gangopadhyay, S.; Acharya, R.; Chattopadhyay, A.K.; Sargade, V.G.: Effect of cutting speed and surface chemistry of cutting tools on the formation of BUL or BUE and surface quality of the generated surface in dry turning of AA6005 aluminium alloy. Mach. Sci. Technol. 14(2), 208–223 (2010)

    Article  Google Scholar 

  16. Santos Jr., M.C.; Machado, A.R.; Barrozo, M.A.S.; Jackson, M.J.; Ezugwu, E.O.: Multi-objective optimization of cutting conditions when turning aluminum alloys (1350-O and 7075-T6 grades) using genetic algorithm. Int. J. Adv. Manuf. Technol. 76, 1123–1138 (2015)

    Article  Google Scholar 

  17. Pugazhenthi, A.; Kanagaraj, G.; Dinaharan, I.; Selvam, J.D.R.: Turning characteristics of in situ formed TiB2 ceramic particulate reinforced AA7075 aluminum matrix composites using polycrystalline diamond cutting tool. Measurement 121, 39–46 (2018)

    Article  Google Scholar 

  18. Pugazhenthi, A.; Dinaharan, I.; Kanagaraj, G.; Selvam, J.D.R.: Predicting the effect of machining parameters on turning characteristics of AA7075/TiB2 in situ aluminum matrix composites using empirical relationships. J. Braz. Soc. Mech. Sci. Eng. 40, 555 (2018). https://doi.org/10.1007/s40430-018-1480-2

    Article  Google Scholar 

  19. Yin, X.; Deng, W.; Zou, Y.; Zhang, J.: Ultrafine grained Al 7075 alloy fabricated by cryogenic temperature large strain extrusion machining combined with aging treatment. Mater. Sci. Eng. A 762, 138106 (2019)

    Article  Google Scholar 

  20. Martín-Béjar, S.; Trujillo, F.J.; Bermudo, C.; Sevilla, L.: Cutting parameters influence on total run-out of dry machined UNS A97075 alloy parts. Proc. Manuf. 41, 835–842 (2019)

    Google Scholar 

  21. Imbrogno, S.; Umbrello, D.; Schulze, V.; Zanger, F.; Segebade, E.: Metallurgical and material properties correlations between machined and severely plastic deformed aluminium alloy. Int. J. Mater. Form. (2019). https://doi.org/10.1007/s12289-019-01515-1

    Article  Google Scholar 

  22. Guntreddi, B.; Ghosh, A.: High-speed machining of aluminium alloy using vegetable oil based small quantity lubrication. Proc. IMechE Part B. J. Eng. Manuf. 215, 1257–1269 (2020). https://doi.org/10.1177/0954405420929787

    Article  Google Scholar 

  23. Imbrogno, S.; Rotella, G.; Rinaldi, S.: Surface and subsurface modifications of AA7075-T6 induced by dry and cryogenic high speed machining. Int. J. Adv. Manuf. Technol. 107, 905–918 (2020)

    Article  Google Scholar 

  24. Luo, H.; Wang, Y.; Zhang, P.: Effect of cutting and vibration parameters on the cutting performance of 7075-T651 aluminum alloy by ultrasonic vibration. Int. J. Adv. Manuf. Technol. 107, 371–384 (2020)

    Article  Google Scholar 

  25. Reis, D.D.; Abrao, A.M.: The machining of aluminium alloy 6351. Proc. Inst. Mech. Eng. Part B. J. Eng. Manuf. 219(1), 27–33 (2005)

    Article  Google Scholar 

  26. Yousefi, R.; Ichida, Y.: A study on ultra–high-speed cutting of aluminium alloy: formation of welded metal on the secondary cutting edge of the tool and its effects on the quality of finished surface. Precis. Eng. 24(4), 371–376 (2000)

    Article  Google Scholar 

  27. Gekonde, H.O.; Subramanian, S.V.: Tribology of tool–chip interface and tool wear mechanisms. Surf. Coat. Technol. 149(2–3), 151–160 (2002)

    Article  Google Scholar 

  28. Bhushan, R.K.; Kumar, S.; Das, S.: Effect of machining parameters on surface roughness and tool wear for 7075 Al alloy SiC composite. Int. J. Adv. Manuf. Technol. 50(5–8), 459–469 (2010)

    Article  Google Scholar 

  29. Kıvak, T.: Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement 50, 19–28 (2014)

    Article  Google Scholar 

  30. de Melo, A.C.; Milan, J.C.G.; Silva, M.B.D.; Machado, Á.R.: Some observations on wear and damages in cemented carbide tools. J. Braz. Soc. Mech. Sci. Eng. 28(3), 269–277 (2006)

    Article  Google Scholar 

  31. Davim, J.P.; Baptista, A.M.: Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminium. J. Mater. Process. Technol. 103(3), 417–423 (2000)

    Article  Google Scholar 

  32. Liew, W.Y.H.; Ding, X.: Wear progression of carbide tool in low-speed end milling of stainless steel. Wear 265(1–2), 155–166 (2008)

    Article  Google Scholar 

  33. Flom, D.G.; Komanduri, R.; Lee, M.: High-speed machining of metals. Annu. Rev. Mater. Sci. 14(1), 231–278 (1984)

    Article  Google Scholar 

  34. Müller, C.; Blümke, R.: Influence of heat treatment and cutting speed on chip segmentation of age hardenable aluminium alloy. Mater. Sci. Technol. 17(6), 651–654 (2001)

    Article  Google Scholar 

  35. Campbell, C.E.; Bendersky, L.A.; Boettinger, W.J.; Ivester, R.: Microstructural characterization of Al-7075-T651 chips and work pieces produced by high-speed machining. Mater. Sci. Eng. A 430(1–2), 15–26 (2006)

    Article  Google Scholar 

  36. Xu, D.; Feng, P.; Li, W.; Ma, Y.; Liu, B.: Research on chip formation parameters of aluminum alloy 6061-T6 based on high-speed orthogonal cutting model. Int. J. Adv. Manuf. Technol. 72(5–8), 955–962 (2014)

    Article  Google Scholar 

  37. Farid, A.A.; Sharif, S.; Idris, M.H.: Chip morphology study in high speed drilling of Al–Si alloy. Int. J. Adv. Manuf. Technol. 57(5–8), 555–564 (2011)

    Article  Google Scholar 

  38. Thakur, A.; Gangopadhyay, S.: Evaluation of micro-features of chips of Inconel 825 during dry turning with uncoated and chemical vapour deposition multilayer coated tools. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232(6), 979–994 (2018)

    Article  Google Scholar 

  39. Mia, M.; Singh, G.; Gupta, M.K.; Sharma, V.S.: Influence of Ranque-Hilsch vortex tube and nitrogen gas assisted MQL in precision turning of Al 6061-T6. Precis. Eng. 53, 289–299 (2018)

    Article  Google Scholar 

  40. Kouadri, S.; Necib, K.; Atlati, S.; Haddag, B.; Nouari, M.: Quantification of the chip segmentation in metal machining: application to machining the aeronautical aluminium alloy AA2024-T351 with cemented carbide tools WC-Co. Int. J. Mach. Tools Manuf. 64, 102–113 (2013)

    Article  Google Scholar 

  41. Pawade, R.S.; Joshi, S.S.: Mechanism of chip formation in high-speed turning of Inconel 718. Mach. Sci. Technol. 15(1), 132–152 (2011)

    Article  Google Scholar 

  42. Becze, C.E.; Elbestawi, M.A.: A chip formation based analytic force model for oblique cutting. Int. J. Mach. Tools Manuf. 42(4), 529–538 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurav Datta.

Appendix

Appendix

See Figs. 17, 18 and 19.

Fig. 17
figure 17

Microstructure of uncoated carbide insert (without etching) obtained through field emission scanning electron microscopy

Fig. 18
figure 18

Optical micrograph indicating coating layers and substrate of MT-CVD TiCN-Al2O3-coated carbide insert

Fig. 19
figure 19

Field emission scanning electron micrograph indicating coating layers and substrate of MT-CVD TiCN-Al2O3-coated carbide insert

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.P., Datta, S. Dry Machining Performance of AA7075-T6 Alloy Using Uncoated Carbide and MT-CVD TiCN-Al2O3-Coated Carbide Inserts. Arab J Sci Eng 45, 9777–9791 (2020). https://doi.org/10.1007/s13369-020-04947-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04947-z

Keywords

Navigation