Skip to main content
Log in

A Comprehensive Review of Saline Water Correlations and Data: Part II—Thermophysical Properties

  • Review-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper reviews the thermophysical properties of saline water correlations and data. The key parameters that influence the properties are considered, such as multi-component composition, high salinity, temperature, and pressure. Since the thermodynamic properties are reviewed in part I of the paper, this part (# II) focuses on the thermophysical properties involving viscosity, surface tension, electrical conductivity, thermal conductivity, osmotic coefficient, activity coefficient, and thermal expansivity. The properties are comprehensive to include all saline water types, i.e., brackish water, seawater, high saline water from basins, lakes, produced water from oil and gas hydraulic fracturing, and so on. The correlations are summarized in tabular forms and assessed based on their accuracy against available experimental data. Besides, guidelines for choosing some correlations are also discussed. Since the thermal conductivity has no multi-component model, a novel and straightforward model is proposed with excellent accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

Activity

A φ :

Modified Debye–Hückel parameter (kg1/2/mol1/2)

A, B :

Constants used in McCleskey multi-component model for electrical conductivity

B ij, B ϕij :

Pitzer parameter, second virial coefficient (kg/mol)

B ij′:

Pitzer binary interaction parameter (kg2/mol)

b, s, n :

Parameters related to the Wang model for BPE calculations

C :

Concentration (mol/m3)

C ij, C ϕij :

Pitzer parameter, unlike-charged interactions (kg2/mol2)

Cl:

Chlorinity (g/kg)

C P :

Specific heat (J/kg.K)

D :

Diffusion coefficient (m2/s)

F :

Faraday’s constant (96,485.3329 A.s/mol)

F 1, F 2, F 3 :

Constants for Pawlowicz method

g :

Interference parameter in Pitzer equation for surface tension calculations

I :

Ionic strength (mol/kg)

K b :

Boltzmann constant (1.3805 × 10−23 J/K)

k :

Thermal conductivity (W/m.K)

K e :

Electrical conductivity (mS/m)

m :

Molality (mol/kg)

M :

Molarity (mol/L)

m s :

Mass of solute (g or kg)

N A :

Avogadro’s number (6.022 × 1023)

P :

Pressure (MPa or bar)

p :

Vapor pressure (MPa or bar)

R :

Universal gas constant (8.3145 J/mol.K)

S :

Salinity (g/kg)

T :

Temperature (°C or K)

u :

Ionic mobility (m2/V.s)

V :

Volume (m3)

Z :

Ionic charge (C)

∆:

Change

µ :

Viscosity of saline water (kg/m.s)

α :

Thermal expansivity (1/K) or Pitzer parameter (kg1/2/mol1/2)

β :

Thermal compressibility (1/Pa) or Pitzer parameter (kg/mol)

γ :

Activity coefficient

θ :

Pitzer parameter (kg/mol)

λ :

Equivalent conductivity (S.cm2/eq)

λ ij :

Pitzer parameter, uncharged interactions (kg/mol)

μ :

Chemical potential (kJ/mol)

ν :

Stoichiometric coefficient

ρ :

Density (kg/L)

σ :

Surface tension (N/m)

ϕ :

Osmotic coefficient

Φ ij, Φ ϕij :

Pitzer parameter, like-charged interactions (kJ/mol)

Φ ij′:

Pitzer parameter, like-charged interactions (kg2/mol2)

Ψ ijk :

Pitzer parameter, ternary interactions (kg2/mol2)

a, X :

Anion

c, M :

Cation

e:

Electrical

n, N :

Neutral species

p:

Isobaric

s :

Solute

S:

Salt

SW:

Seawater

R:

Relative

W:

Water

o:

Infinite dilution

References

  1. Ksayer, E.B.L.; Younes, M.; Clodic, D.: Concentration of brine solution used for low-temperature air cooling. Int. J. Refrig 35, 418–423 (2012). https://doi.org/10.1016/j.ijrefrig.2011.10.009

    Article  Google Scholar 

  2. Lv, H.; Wang, Y.; Wu, L.; Hu, Y.: Numerical simulation and optimization of the flash chamber for multi-stage flash seawater desalination. Desalination 465, 69–78 (2019). https://doi.org/10.1016/j.desal.2019.04.032

    Article  Google Scholar 

  3. Baig, H.; Antar, M.A.; Zubair, S.M.: Performance evaluation of a once-through multi-stage flash distillation system: impact of brine heater fouling. Energy Convers. Manag. 52, 1414–1425 (2011). https://doi.org/10.1016/j.enconman.2010.10.004

    Article  Google Scholar 

  4. Park, I.S.; Park, S.M.; Ha, J.S.: Design and application of thermal vapor compressor for multi-effect desalination plant. Desalination 182, 199–208 (2005). https://doi.org/10.1016/j.desal.2005.02.027

    Article  Google Scholar 

  5. Zhou, S.; Gong, L.; Liu, X.; Shen, S.: Mathematical modeling and performance analysis for multi-effect evaporation/multi-effect evaporation with thermal vapor compression desalination system. Appl. Therm. Eng. 159, 113759 (2019). https://doi.org/10.1016/j.applthermaleng.2019.113759

    Article  Google Scholar 

  6. Narayan, G.P.; StJohn, M.G.; Zubair, S.M.; Lienhard, J.H.: Thermal design of the humidification dehumidification desalination system: an experimental investigation. Int. J. Heat Mass Transf. 58, 740–748 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.035

    Article  Google Scholar 

  7. Qasem, N.A.A.; Zubair, S.M.: Performance evaluation of a novel hybrid humidification-dehumidification (air-heated) system with an adsorption desalination system. Desalination 461, 37–54 (2019). https://doi.org/10.1016/j.desal.2019.03.011

    Article  Google Scholar 

  8. Ahmed, M.A.; Qasem, N.A.A.; Zubair, S.M.: Analytical and numerical schemes for thermodynamically balanced humidification-dehumidification desalination systems. Energy Convers. Manag. 200, 112052 (2019). https://doi.org/10.1016/j.enconman.2019.112052

    Article  Google Scholar 

  9. Xu, H.; Sun, X.Y.; Dai, Y.J.: Thermodynamic study on an enhanced humidification-dehumidification solar desalination system with weakly compressed air and internal heat recovery. Energy Convers. Manag. 181, 68–79 (2019). https://doi.org/10.1016/J.ENCONMAN.2018.11.073

    Article  Google Scholar 

  10. Zhang, Y.; Zhang, H.; Zheng, W.; You, S.; Wang, Y.: Numerical investigation of a humidification-dehumidification desalination system driven by heat pump. Energy Convers. Manag. 180, 641–653 (2019). https://doi.org/10.1016/J.ENCONMAN.2018.11.018

    Article  Google Scholar 

  11. Qasem, N.A.A.; Ahmed, M.A.; Zubair, S.M.: The impact of thermodynamic balancing on performance of a desiccant-based humidification-dehumidification system to harvest freshwater from atmospheric air. Energy Convers. Manag. 199, 112011 (2019). https://doi.org/10.1016/j.enconman.2019.112011

    Article  Google Scholar 

  12. He, W.F.; Han, D.; Zhu, W.P.; Ji, C.: Thermo-economic analysis of a water-heated humidification-dehumidification desalination system with waste heat recovery. Energy Convers. Manag. 160, 182–190 (2018). https://doi.org/10.1016/J.ENCONMAN.2018.01.048

    Article  Google Scholar 

  13. Mitra, S.; Thu, K.; Saha, B.B.; Dutta, P.: Performance evaluation and determination of minimum desorption temperature of a two-stage air cooled silica gel/water adsorption system. Appl. Energy 206, 507–518 (2017). https://doi.org/10.1016/j.apenergy.2017.08.198

    Article  Google Scholar 

  14. Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N.: Reverse osmosis desalination: a state-of-the-art review. Desalination 459, 59–104 (2019). https://doi.org/10.1016/j.desal.2019.02.008

    Article  Google Scholar 

  15. Qasem, N.A.A.; Qureshi, B.A.; Zubair, S.M.: Improvement in design of electrodialysis desalination plants by considering the Donnan potential. Desalination (2018). https://doi.org/10.1016/j.desal.2018.04.023

    Article  Google Scholar 

  16. Fidaleo, M.; Moresi, M.: Electrodialytic desalting of model concentrated NaCl brines as such or enriched with a non-electrolyte osmotic component. J. Memb. Sci. 367, 220–232 (2011). https://doi.org/10.1016/j.memsci.2010.10.069

    Article  Google Scholar 

  17. Qasem, N.A.A.; Zubair, S.M.; Qureshi, B.A.; Generous, M.M.: The impact of thermodynamic potentials on the design of electrodialysis desalination plants. Energy Convers. Manag. 205, 112448 (2020). https://doi.org/10.1016/j.enconman.2019.112448

    Article  Google Scholar 

  18. Generous, M.M.; Qasem, N.A.A.; Zubair, S.M.: The significance of modeling electrodialysis desalination using multi-component saline water. Desalination 482, 114347 (2020). https://doi.org/10.1016/j.desal.2020.114347

    Article  Google Scholar 

  19. Generous, M.M.; Qasem, N.A.A.; Zubair, S.M.: Exergy-based entropy-generation analysis of electrodialysis desalination systems. Energy Convers. Manag. (2020). https://doi.org/10.1016/j.enconman.2020.113119

    Article  Google Scholar 

  20. Lin, J.; Lin, F.; Chen, X.; Ye, W.; Li, X.; Zeng, H.; Van Der Bruggen, B.: Sustainable management of textile wastewater: a hybrid tight ultrafiltration/bipolar-membrane electrodialysis process for resource recovery and zero liquid discharge. Ind. Eng. Chem. Res. (2019). https://doi.org/10.1021/acs.iecr.9b01353

    Article  Google Scholar 

  21. Lin, J.; Ye, W.; Huang, J.; Ricard, B.; Baltaru, M.C.; Greydanus, B.; Balta, S.; Shen, J.; Vlad, M.; Sotto, A.; Luis, P.; Van Der Bruggen, B.: Toward resource recovery from textile wastewater: dye extraction, water and base/acid regeneration using a hybrid NF-BMED process. ACS Sustain. Chem. Eng. 3, 1993–2001 (2015). https://doi.org/10.1021/acssuschemeng.5b00234

    Article  Google Scholar 

  22. Ye, W.; Liu, R.; Chen, X.; Chen, Q.; Lin, J.; Lin, X.; Van der Bruggen, B.; Zhao, S.: Loose nanofiltration-based electrodialysis for highly efficient textile wastewater treatment. J. Memb. Sci. (2020). https://doi.org/10.1016/j.memsci.2020.118182

    Article  Google Scholar 

  23. Khalifa, A.E.; Alawad, S.M.; Antar, M.A.: Parallel and series multistage air gap membrane distillation. Desalination 417, 69–76 (2017). https://doi.org/10.1016/j.desal.2017.05.003

    Article  Google Scholar 

  24. Lin, J.; Ye, W.; Zeng, H.; Yang, H.; Shen, J.; Darvishmanesh, S.; Luis, P.; Sotto, A.; Van der Bruggen, B.: Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes. J. Memb. Sci. 477, 183–193 (2015). https://doi.org/10.1016/j.memsci.2014.12.008

    Article  Google Scholar 

  25. Ye, W.; Liu, R.; Lin, F.; Ye, K.; Lin, J.; Zhao, S.; Van der Bruggen, B.: Elevated nanofiltration performance via mussel-inspired co-deposition for sustainable resource extraction from landfill leachate concentrate. Chem. Eng. J. 388, 124200 (2020). https://doi.org/10.1016/j.cej.2020.124200

    Article  Google Scholar 

  26. Ye, W.; Liu, H.; Jiang, M.; Lin, J.; Ye, K.; Fang, S.; Xu, Y.; Zhao, S.; Van der Bruggen, B.; He, Z.: Sustainable management of landfill leachate concentrate through recovering humic substance as liquid fertilizer by loose nanofiltration. Water Res. 157, 555–563 (2019). https://doi.org/10.1016/j.watres.2019.02.060

    Article  Google Scholar 

  27. Lin, J.; Ye, W.; Baltaru, M.C.; Tang, Y.P.; Bernstein, N.J.; Gao, P.; Balta, S.; Vlad, M.; Volodin, A.; Sotto, A.; Luis, P.; Zydney, A.L.; Van der Bruggen, B.: Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment. J. Memb. Sci. 514, 217–228 (2016). https://doi.org/10.1016/j.memsci.2016.04.057

    Article  Google Scholar 

  28. Ye, W.; Ye, K.; Lin, F.; Liu, H.; Jiang, M.; Wang, J.; Liu, R.; Lin, J.: Enhanced fractionation of dye/salt mixtures by tight ultrafiltration membranes via fast bio-inspired co-deposition for sustainable textile wastewater management. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122321

    Article  Google Scholar 

  29. Mitra, S.; Srinivasan, K.; Kumar, P.; Murthy, S.S.; Dutta, P.: Solar driven adsorption desalination system. Energy Proc. 49, 2261–2269 (2013). https://doi.org/10.1016/j.egypro.2014.03.239

    Article  Google Scholar 

  30. Tsiakis, P.; Papageorgiou, L.G.: Optimal design of an electrodialysis brackish water desalination plant. Desalination 173, 173–186 (2005). https://doi.org/10.1016/j.desal.2004.08.031

    Article  Google Scholar 

  31. Generous, M.M.; Qasem, N.A.A.; Qureshi, B.A.; Zubair, S.M.: A comprehensive review of saline water correlations and data—part I: thermodynamic properties. Arab. J. Sci. Eng. 45, 8817–8876 (2020). https://doi.org/10.1007/s13369-020-05019-y

    Article  Google Scholar 

  32. Sharqawy, M.H.; Lienhard, J.H.; Zubair, S.M.: Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 29, 355 (2011). https://doi.org/10.5004/dwt.2011.2947

    Article  Google Scholar 

  33. Nayar, K.G.; Sharqawy, M.H.; Banchik, L.D.; Lienhard, J.H.: Thermophysical properties of seawater: a review and new correlations that include pressure dependence. Desalination 390, 1–24 (2016). https://doi.org/10.1016/j.desal.2016.02.024

    Article  Google Scholar 

  34. Thiel, G.P.; Lienhard, J.H.: Treating produced water from hydraulic fracturing: composition effects on scale formation and desalination system selection. Desalination 346, 54–69 (2014). https://doi.org/10.1016/j.desal.2014.05.001

    Article  Google Scholar 

  35. Jiang, M.; Ye, K.; Lin, J.; Zhang, X.; Ye, W.; Zhao, S.; Van der Bruggen, B.: Effective dye purification using tight ceramic ultrafiltration membrane. J. Memb. Sci. 566, 151–160 (2018). https://doi.org/10.1016/j.memsci.2018.09.001

    Article  Google Scholar 

  36. Han, G.; Feng, Y.; Chung, T.S.; Weber, M.; Maletzko, C.: Phase inversion directly induced tight ultrafiltration (UF) hollow fiber membranes for effective removal of textile dyes. Environ. Sci. Technol. 51, 14254–14261 (2017). https://doi.org/10.1021/acs.est.7b05340

    Article  Google Scholar 

  37. Bakher, Z.; Kaddami, M.: Thermodynamic properties and Pitzer parameter determination for orthophosphoric acid from freezing point and isopiestic measurement data. Braz. J. Chem. Eng. 35, 1153–1162 (2018). https://doi.org/10.1590/0104-6632.20180353s20170432

    Article  Google Scholar 

  38. Lach, A.; André, L.; Guignot, S.; Christov, C.; Henocq, P.; Lassin, A.: A Pitzer parametrization to predict solution properties and salt solubility in the H–Na–K–Ca–Mg–NO3–H2O system at 298.15 K. J. Chem. Eng. Data 63, 787–800 (2018). https://doi.org/10.1021/acs.jced.7b00953

    Article  Google Scholar 

  39. Jaworski, Z.; Czernuszewicz, M.; Gralla, Ł.: A comparative study of thermodynamic electrolyte models applied to the solvay soda system. Chem. Process Eng. Inz. Chem. Process. 32, 135–154 (2011). https://doi.org/10.2478/v10176-011-0011-9

    Article  Google Scholar 

  40. Chen, L.; Kang, Q.; Tang, Q.; Robinson, B.A.; He, Y.L.; Tao, W.Q.: Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation. Int. J. Heat Mass Transf. 85, 935–949 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.035

    Article  Google Scholar 

  41. Sun, F.; Yao, Y.; Li, X.; Li, G.: A brief communication on the effect of seawater on water flow in offshore wells at supercritical state. J. Pet. Explor. Prod. Technol. 8, 1587–1596 (2018). https://doi.org/10.1007/s13202-018-0456-1

    Article  Google Scholar 

  42. Huber, M.L.; Perkins, R.A.; Laesecke, A.; Friend, D.G.; Sengers, J.V.; Assael, M.J.; Metaxa, I.N.; Vogel, E.; Mareš, R.; Miyagawa, K.: New international formulation for the viscosity of H2O. J. Phys. Chem. Ref. Data 38, 101–125 (2009). https://doi.org/10.1063/1.3088050

    Article  Google Scholar 

  43. Gupta, S.V.: Viscometry for Liquids, p. 194 (2014). https://doi.org/10.1007/978-3-319-04858-1

  44. Escobar, A.; Negro, V.; López-Gutiérrez, J.S.; Esteban, M.D.: Influence of temperature and salinity on hydrodynamic forces. J. Ocean Eng. Sci. 1, 325–336 (2016). https://doi.org/10.1016/j.joes.2016.09.004

    Article  Google Scholar 

  45. Patil, R.S.; Shaikh, V.R.; Patil, P.D.; Borse, A.U.; Patil, K.J.: The viscosity and coefficient (Jones–Dole equation) studies in aqueous solutions of alkyltrimethylammonium bromides at 298.15 K. J. Mol. Liq. 200, 416–424 (2014). https://doi.org/10.1016/j.molliq.2014.11.003

    Article  Google Scholar 

  46. Ghallab, A.O.; Elnahas, M.H.: Determination of physical properties of saline water and different pressure and concentrations. In: Scientific Proceedings of International Science Conference “INDUSTRY 4.0”, pp. 109–112 (2016)

  47. Islam, A.W.; Carlson, E.S.: Viscosity models and effects of dissolved CO2. Energy Fuels 26, 5330–5336 (2012). https://doi.org/10.1021/ef3006228

    Article  Google Scholar 

  48. Fabuss, B.M.; Korosi, A.; Othmer, D.F.: Viscosities of aqueous solutions of several electrolytes present in sea water. J. Chem. Eng. Data 14, 192–197 (1969). https://doi.org/10.1021/je60041a025

    Article  Google Scholar 

  49. Numbere, D.; Brigham, W.E.; Standing, M.B.: Correlation for physical properties of petroleum reservoir brines, United States N. P. (1977). https://doi.org/10.2172/6733264

  50. Isdale, J.D.; Spence, C.M.; Tudhope, J.S.: Physical properties of sea water solutions: viscosity. Desalination 10, 319–328 (1972). https://doi.org/10.1016/S0011-9164(00)80002-8

    Article  Google Scholar 

  51. El-Dessouky, H.T.; Ettouney, H.M.: Fundamentals of Salt Water Desalination. Elsevier, Amsterdam (2002). https://doi.org/10.1016/b978-0-444-50810-2.x5000-3

    Book  Google Scholar 

  52. Millero, F.J.: The Sea. Wiley, New York (1974)

    Google Scholar 

  53. Laliberté, M.: Model for calculating the viscosity of aqueous solutions. J. Chem. Eng. Data 52, 321–335 (2007). https://doi.org/10.1021/je0604075

    Article  Google Scholar 

  54. IAPWS, Release on the IAPWS formulation 2008 for the viscosity of ordinary water substance. Int. Assoc. Prop. Water Steam. 1–9 (2008). http://www.iapws.org/

  55. Leyendekkers, J.V.: Prediction of the heat capacities of seawater and other multicomponent solutions from the Tammann–Tait–Gibson model. Mar. Chem. 9, 25–35 (1980). https://doi.org/10.1016/0304-4203(80)90004-3

    Article  Google Scholar 

  56. Jamieson, D.T.; Irving, J.B.; Tudhope, J.S.: Prediction of the thermal conductivity of petroleum products. Wear 33, 75–83 (1975). https://doi.org/10.1016/0043-1648(75)90225-2

    Article  Google Scholar 

  57. Abdulagatov, I.M.; Magomedov, U.B.: Thermal conductivity of pure water and aqueous SrBr2 solutions at high temperatures and high pressures. High Temp. High Press. 35–36, 149–168 (2003). https://doi.org/10.1068/htjr097

    Article  Google Scholar 

  58. Wang, P.; Anderko, A.: Modeling thermal conductivity of electrolyte mixtures in wide temperature and pressure ranges: seawater and its main components. Int. J. Thermophys. 33, 235–258 (2012). https://doi.org/10.1007/s10765-012-1154-8

    Article  Google Scholar 

  59. Wang, P.; Anderko, A.: Revised model for the thermal conductivity of multicomponent electrolyte solutions and seawater. Int. J. Thermophys. 36, 5–24 (2015). https://doi.org/10.1007/s10765-014-1756-4

    Article  Google Scholar 

  60. Wang, P.; Anderko, A.; Young, R.D.: Modeling electrical conductivity in concentrated and mixed-solvent electrolyte solutions. Ind. Eng. Chem. Res. 43, 8083–8092 (2004). https://doi.org/10.1021/ie040144c

    Article  Google Scholar 

  61. Jamieson, D.T.; Tudhope, J.S.: Physical properties of seawater solutions: thermal conductivity. Desalination 8, 393–401 (1970)

    Article  Google Scholar 

  62. Caldwell, D.R.: Thermal conductivity of sea water. Deep. Res. Oceanogr. Abstr. 21, 131–137 (1974). https://doi.org/10.1016/0011-7471(74)90070-9

    Article  Google Scholar 

  63. Castelli, V.J.; Stanley, E.M.; Fischer, E.C.: The thermal conductivity of seawater as a function of pressure and temperature. Deep. Res. Oceanogr. Abstr. 21, 311–319 (1974). https://doi.org/10.1016/0011-7471(74)90102-8

    Article  Google Scholar 

  64. Pitzer, K.S.; Kim, J.J.: Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96, 5701–5707 (1974). https://doi.org/10.1021/ja00825a004

    Article  Google Scholar 

  65. Pitzer, K.S.: A thermodynamic model for aqueous solutions of liquid-like density. Rev. Miner. 17, 97–142 (1987)

    Google Scholar 

  66. Harvie, C.E.; Weare, J.H.: The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–Cl–SO4–H2O system from zero to high concentration at 25 °C. Geochim. Cosmochim. Acta 44, 981–997 (1980). https://doi.org/10.1016/0016-7037(80)90287-2

    Article  Google Scholar 

  67. Harvie, C.E.; Møller, N.; Weare, J.H.: The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 °C. Geochim. Cosmochim. Acta 48, 723–751 (1984). https://doi.org/10.1016/0016-7037(84)90098-X

    Article  Google Scholar 

  68. Mistry, K.H.; Lienhard, J.H.: Effect of nonideal solution behavior on desalination of a sodium chloride solution and comparison to seawater. J. Energy Resour. Technol. 135, 042003 (2013). https://doi.org/10.1115/1.4024544

    Article  Google Scholar 

  69. Kim, H.; Frederick, W.J.: Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 °C. J. Chem. Eng. Data 33, 174–188 (1988)

    Article  Google Scholar 

  70. Zemaitis, J.F.; Clark, D.M.; Rafal, M.; Scrivner, N.C.: Activity coefficients of single strong electrolytes. In: Handbook of Aqueous Electrolyte Thermodynamics, pp. 46–203. Wiley, New York (1986). https://doi.org/10.1002/9780470938416.ch4

  71. Zemaitis, J.F.; Clark, D.M.; Rafal, M.; Scrivner, N.C.: Activity coefficients of multicomponent strong electrolytes. In: Handbook of Aqueous Electrolyte Thermodynamics, pp. 294–298. Wiley, New York (1986). https://doi.org/10.1002/9780470938416.ch4

  72. Kraaijeveld, G.; Sumberova, V.; Kuindersma, S.; Wesselingh, H.: Modelling electrodialysis using the Maxwell–Stefan description. Chem. Eng. J. Biochem. Eng. J. 57, 163–176 (1995). https://doi.org/10.1016/0923-0467(94)02940-7

    Article  Google Scholar 

  73. Bromley, L.A.: Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19, 313–320 (1973). https://doi.org/10.1002/aic.690190216

    Article  Google Scholar 

  74. Fidaleo, M.; Moresi, M.: Optimal strategy to model the electrodialytic recovery of a strong electrolyte. J. Memb. Sci. 260, 90–111 (2005). https://doi.org/10.1016/j.memsci.2005.01.048

    Article  Google Scholar 

  75. Güntelberg, E.: Untersuchungen über Ioneninteraktion. Zeitschrift Für Phys. Chemie. 123, 199–247 (1926)

    Google Scholar 

  76. Davies, C.W.: The extent of dissociation of salts in water. Part VIII. An equation for the mean ionic activity coefficient of an electrolyte in water, and a revision of the dissociation constants of some sulphates. J. Chem. Soc. 2093–2098 (1938)

  77. Robinson, R.A.; Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworth and Co., London (1970)

    Google Scholar 

  78. Mazloumi, S.H.: Representation of activity and osmotic coefficients of electrolyte solutions using non-electrolyte Wilson-NRF model with ion-specific parameters. Fluid Phase Equilib. 388, 31–36 (2015). https://doi.org/10.1016/j.fluid.2014.12.035

    Article  Google Scholar 

  79. Sato, A.; Aoki, M.; WatanabE, M.: Single rising bubble motion in aqueous solution of electrolyte. J. Fluid Sci. Technol. 5, 14–25 (2010). https://doi.org/10.1299/jfst.5.14

    Article  Google Scholar 

  80. Boniewicz-Szmyt, K.; Pogorzelski, S.J.: Thermoelastic surface properties of seawater in coastal areas of the Baltic Sea. Oceanologia 58, 25–38 (2016). https://doi.org/10.1016/j.oceano.2015.08.003

    Article  Google Scholar 

  81. Okur, H.I.; Chen, Y.; Wilkins, D.M.; Roke, S.: The Jones-ray effect reinterpreted: surface tension minima of low ionic strength electrolyte solutions are caused by electric field induced water-water correlations. Chem. Phys. Lett. 684, 433–442 (2017). https://doi.org/10.1016/j.cplett.2017.06.018

    Article  Google Scholar 

  82. Lima, E.R.A.; De Melo, B.M.; Baptista, L.T.; Paredes, M.L.L.: Specific ion effects on the interfacial tension of water/hydrocarbon systems. Braz. J. Chem. Eng. 30, 55–62 (2013). https://doi.org/10.1590/S0104-66322013000100007

    Article  Google Scholar 

  83. Wang, X.; Chen, C.; Binder, K.; Kuhn, U.; Pöschl, U.; Su, H.; Cheng, Y.: Molecular dynamics simulation of the surface tension of aqueous sodium chloride: from dilute to highly supersaturated solutions and molten salt. Atmos. Chem. Phys. 18, 17077–17086 (2018). https://doi.org/10.5194/acp-18-17077-2018

    Article  Google Scholar 

  84. Salameh, A.; Vorka, F.; Daskalakis, V.: Correlation between surface tension and the bulk dynamics in salty atmospheric aquatic droplets. J. Phys. Chem. C 120, 11508–11518 (2016). https://doi.org/10.1021/acs.jpcc.6b01842

    Article  Google Scholar 

  85. Nayar, K.G.; Panchanathan, D.; McKinley, G.H.; Lienhard, J.H.: Surface tension of seawater. J. Phys. Chem. Ref. Data (2014). https://doi.org/10.1063/1.4899037

    Article  Google Scholar 

  86. Yizhak, M.: Surface tension of aqueous electrolytes and ions. Encycl. Surf. Colloid Sci. Third Ed. (2015). https://doi.org/10.1081/e-escs3-120000581

    Article  Google Scholar 

  87. Leroy, P.; Lassin, A.; Azaroual, M.; Andre, L.: Predicting the surface tension of aqueous 1: 1 electrolyte solutions at high salinity to cite this version: predicting the surface tension of aqueous 1–1 electrolyte solutions at high salinity. Geochim. Cosmochim. Acta 74, 5427–5442 (2010). https://doi.org/10.1016/j.gca.2010.06.012

    Article  Google Scholar 

  88. Součková, M.; Klomfar, J.; Pátek, J.: Measurement and correlation of the surface tension-temperature relation for methanol. J. Chem. Eng. Data 53, 2233–2236 (2008). https://doi.org/10.1021/je8003468

    Article  Google Scholar 

  89. Leonard, C.; Ferrasse, J.H.; Boutin, O.; Lefevre, S.; Viand, A.: Measurements and correlations for gas liquid surface tension at high pressure and high temperature. AIChE J. 64, 4110–4117 (2018). https://doi.org/10.1002/aic.16216

    Article  Google Scholar 

  90. Kamali, M.J.; Kamali, Z.; Vatankhah, G.: Thermodynamic modeling of surface tension of aqueous electrolyte solution by competitive adsorption model. J. Thermodyn. 2015, 1–8 (2015). https://doi.org/10.1155/2015/319704

    Article  Google Scholar 

  91. Stairs, R.A.: Calculation of surface tension of salt solutions: effective polarizability of solvated ions. Can. J. Chem. 73, 781–787 (2006). https://doi.org/10.1139/v95-098

    Article  Google Scholar 

  92. Ghohua, Z.L.C.; Jingzen, S.: Study on the surface tension of sea water. Oceanol. Limnol. Sin. 25(3), 306–311 (1994)

    Google Scholar 

  93. Krummel, O.: Handbuch der ozeanographie, 2. völlig, Stuttgart,J. Engelhorn (1907). https://doi.org/10.5962/bhl.title.16991

  94. Fleming, R.H.; Revelle, R.R.: Physical process in the ocean, recent marine sediments. Am. Assoc. Pet. Geol. Bull. 48, 48–141 (1939)

    Google Scholar 

  95. Zhu, X.; Nordstrom, D.K.; McCleskey, R.B.; Wang, R.: Ionic molal conductivities, activity coefficients, and dissociation constants of HAsO42 − and H2AsO4 − from 5 to 90 °C and ionic strengths from 0.001 up to 3 mol kg−1 and applications in natural systems. Chem. Geol. 441, 177–190 (2016). https://doi.org/10.1016/j.chemgeo.2016.08.006

    Article  Google Scholar 

  96. Omar, M.K.; Ahmad, A.H.: Conductivity and ionic mobility studies on Li2WO4–LiI–Al2O3 by EIS and NMR techniques. J. Teknol. 75, 39–44 (2015). https://doi.org/10.11113/jt.v75.5170

    Article  Google Scholar 

  97. Bernard, O.; Aupiais, J.: Conductivity of weak electrolytes for buffer solutions: modeling within the mean spherical approximation. J. Mol. Liq. 272, 631–637 (2018). https://doi.org/10.1016/j.molliq.2018.09.103

    Article  Google Scholar 

  98. Harris, K.R.: Comment on “ionic conductivity, diffusion coefficients, and degree of dissociation in lithium electrolytes, ionic liquids, and hydrogel polyelectrolytes”. J. Phys. Chem. B 122, 10964–10967 (2018). https://doi.org/10.1021/acs.jpcb.8b08610

    Article  Google Scholar 

  99. Pawlowicz, R.: Limnology oceanography: method of calculating the conductivity of natural waters. Limnol. Oceanogr. 6, 489–501 (2008)

    Article  Google Scholar 

  100. Park, K.: Partial equivalent conductance of electrolytes in sea water. Deep. Res. Oceanogr. Abstr. 11, 729–736 (1964). https://doi.org/10.1016/0011-7471(64)90946-5

    Article  Google Scholar 

  101. McCleskey, R.B.; Nordstrom, D.K.; Ryan, J.N.; Ball, J.W.: A new method of calculating electrical conductivity with applications to natural waters. Geochim. Cosmochim. Acta 77, 369–382 (2012). https://doi.org/10.1016/j.gca.2011.10.031

    Article  Google Scholar 

  102. McCleskey, B.B.; Nordstrom, K.K.; Ryan, J.N.: Comparison of electrical conductivity calculation methods for natural waters. Limnol. Oceanogr. Methods 10, 952–967 (2012). https://doi.org/10.4319/lom.2012.10.952

    Article  Google Scholar 

  103. Pelizzetti, A.G.E.: Chemistry of Marine Water Sediments (1999). https://doi.org/10.1007/978-3-662-06431-3

  104. Noyes, A.A.; Coolidge, W.D.: The electrical conductivity of aqueous solutions at high temperatures. 1—Description of the apparatus. Results with sodium and potassium chloride up to 306°. J. Am. Chem. Soc. 26, 134–170 (1904). https://doi.org/10.1021/ja01992a002

    Article  Google Scholar 

  105. Poisson, A.; Papaud, A.: Diffusion coefficients of major ions in seawater. Science 13, 265–280 (1983)

    Google Scholar 

  106. Sato, H.; Yui, M.; Yoshikawa, H.: Ionic diffusion coefficients of Cs + , Pb2+, Sm3+, Ni2+, SeO4 2 and TcO−4 in free water determined from conductivity measurements. J. Nucl. Sci. Technol. 33, 950–955 (1996). https://doi.org/10.1080/18811248.1996.9732037

    Article  Google Scholar 

  107. Little, A.D.: Defence Documentation Center for Scientific and Technical Information. Cameron Station Virginia (n.d.)

  108. Meersman, F.; Nies, E.; Heremans, K.: On the thermal expansion of water and the phase behavior of macromolecules in aqueous solution. Zeitschrift Fur Naturforsch. Sect. B J. Chem. Sci. 63, 785–790 (2008)

    Article  Google Scholar 

  109. Laliberté, M.; Cooper, W.E.: Model for calculating the density of aqueous electrolyte solutions. J. Chem. Eng. Data 49, 1141–1151 (2004). https://doi.org/10.1021/je0498659

    Article  Google Scholar 

  110. Pandey, J.D.; Tripathi, S.B.; Sanguri, V.: Thermal expansivity of multicomponent liquid systems. J. Mol. Liq. 100, 153–161 (2002). https://doi.org/10.1016/S0167-7322(02)00016-8

    Article  Google Scholar 

  111. Bradshaw, A.; Schleicher, K.E.: Direct measurement of thermal expansion of sea water under pressure. Deep. Res. Oceanogr. Abstr. (1970). https://doi.org/10.1016/0011-7471(70)90035-5

    Article  Google Scholar 

  112. Chen, C.T.; Millero, F.J.: The specific volume of seawater at high pressures. Deep. Res. Oceanogr. Abstr. 23, 595–612 (1976). https://doi.org/10.1016/0011-7471(76)90003-6

    Article  Google Scholar 

  113. Li, Z.B.; Li, Y.G.; Lu, J.F.: Surface tension model for concentrated electrolyte aqueous solutions by the Pitzer equation. Ind. Eng. Chem. Res. 38, 1133–1139 (1999). https://doi.org/10.1021/ie980465m

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the support provided by King Fahd University of Petroleum & Minerals through the project IN171048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed M. Zubair.

Appendix

Appendix

See Tables 9, 10, 11, 12, 13, 14, 15, 16, and 17.

Table 9 Diffusion constants of inorganic cations [106]
Table 10 Diffusion constants of inorganic anions [106]
Table 11 Diffusion constants of organic anions [106]
Table 12 Data of McCleskey et al. model for equations used to calculate individual ionic-molal conductivities \(\left( {{\text{mS}}\;{\text{kg}}/{\text{cm}}\;{\text{mol}}} \right)\) and for the ions applicable to natural waters (T is in °C) [101]
Table 13 Data for Park method for seawater: partial equivalent ionic conductance of major ions in seawater at 23 °C, assuming the cation transference number of potassium chloride in seawater is 0.49 Ω/cm2 [100]
Table 14 Ion-dependent numerical parameter [99]
Table 15 Individual aqueous species considered in this study and parameters for calculating their contributions to thermal conductivity [59]
Table 16 Coefficient (α) for selected aqueous ions [59]
Table 17 Calculated results of surface tension and parameters for single-electrolyte aqueous solutions [113]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasem, N.A.A., Generous, M.M., Qureshi, B.A. et al. A Comprehensive Review of Saline Water Correlations and Data: Part II—Thermophysical Properties. Arab J Sci Eng 46, 1941–1979 (2021). https://doi.org/10.1007/s13369-020-05020-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05020-5

Keywords

Navigation