Skip to main content
Log in

Research on Understanding the Effect of Deep Learning on User Preferences

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Recommender systems are becoming more essential than ever as the data available online is increasing manifold. The increasing data presents us with an opportunity to build complex systems that can model the user interactions more accurately and extract sophisticated features to provide recommendations with better accuracy. To construct these complex models, deep learning is emerging as one of the most powerful tools. It can process large amounts of data to learn the structure and patterns that can be exploited. It has been used in recommender systems to solve cold-start problem, better estimate the interaction functions, and extract deep feature representations, among other facets that plague the traditional recommender systems. As big data is becoming more prevalent, there is a need to use tools that can take advantage of such explosive data. An extensive study on recommender systems using deep learning has been performed in the paper. The literature review spans in-depth analysis and comparative study of the research domain. The paper exhibits a vast range of scope for efficient recommender systems in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kim, K.; Ahn, H.: A recommender system using GA K-means clustering in an online shopping market. Expert Syst. Appl. 34, 1200–1209 (2008). https://doi.org/10.1016/j.eswa.2006.12.025

    Article  Google Scholar 

  2. Meteren, R. Van; Someren, M. Van: Using content-based filtering for recommendation. ECML/MLNET Work. Mach. Learn. New Inf. Age. (2000). https://doi.org/10.1125/5743

  3. Vekariya, V.; Kulkarni, G.R.: Hybrid recommender systems: survey and experiments. In: 2012 2nd International Conference on Digital Information and Communications Technology its APPL. DICTAP 2012, pp. 469–473 (2012). https://doi.org/10.1109/DICTAP.2012.6215409

  4. Zhang, X.; Liu, H.; Chen, X.; Zhong, J.; Wang, D.: A novel hybrid deep recommendation system to differentiate user’s preference and item’s attractiveness. Inf. Sci. (Ny) 519, 306–316 (2020). https://doi.org/10.1016/j.ins.2020.01.044

    Article  Google Scholar 

  5. Peterson J.J.; Yahyah M.; Lief K.; H.N.: Predictive distributions for constructing the ICH Q8 design space. In: Comprehensive Quality by Design for Pharmaceutical Product Development and Manufacture, pp. 55–70 (2017). https://doi.org/10.1145/1143844.1143865

  6. Zhu, X.: Semi-supervised learning literature survey contents. Sci. York. 10, 10 (2008)

  7. Grant, P.: Assessment and selection. Bus. Giv. (2014). https://doi.org/10.1057/9780230355033.0018

    Article  Google Scholar 

  8. Liu, Y.H.; Wang, X.K.; Liu, P.X.; Zheng, J.P.; Shu, C.Y.; Pan, G.S.; Luo, J.: Bin: Modification on the tribological properties of ceramics lubricated by water using fullerenol as a lubricating additive. Sci. China Technol. Sci. 55, 2656–2661 (2012). https://doi.org/10.1007/s11431-012-4938-y

    Article  Google Scholar 

  9. Zhang, Y.; Ai, Q.; Chen, X.; Croft, W.B.: Joint representation learning for top-N recommendation with heterogeneous information sources. In: International Conference on Information and Knowledge Management. Proceedings of Part F1318, 1449–1458 (2017). https://doi.org/10.1145/3132847.3132892

  10. Almahairi, A.; Kastner, K.; Cho, K.; Courville, A.: Learning distributed representations from reviews for collaborative filtering. In: RecSys 2015 – Proceedings of 9th ACM Conference on Recommendation Systems, pp. 147–154 (2015). https://doi.org/10.1145/2792838.2800192

  11. Elkahky, A.M.; Song, Y.; He, X.: A multi-view deep learning approach for cross domain user modeling in recommendation systems. In: Proceedings of 24th International Conference on World Wide Web - WWW’15, pp. 278–288 (2015). https://doi.org/10.1145/2736277.2741667

  12. Seo, S.; Huang, J.; Yang, H.; Liu, Y.: Interpretable convolutional neural networks with dual local and global attention for review rating prediction. In: Proceedings of Elsevier ACM Conference on Recommendation Systems - RecSys’17, pp. 297–305 (2017). https://doi.org/10.1145/3109859.3109890

  13. Donkers, T.; Loepp, B.; Ziegler, J.: Sequential user-based recurrent neural network recommendations. In: Proceedings of Elsevier ACM Conference on Recommendation Systems - RecSys’17, pp. 152–160 (2017). https://doi.org/10.1145/3109859.3109877

  14. Purkaystha, B.; Datta, T.; Islam, M.S.; Marium-E-Jannat: Product recommendation: a deep learning factorization method using separate learners. In: 20th The International Conference on Information and Computer Technologies ICCIT 2017. 2018-Janua, pp. 1–5 (2018). https://doi.org/10.1109/ICCITECHN.2017.8281852

  15. Zheng, L.; Noroozi, V.; Yu, P.S.: Joint Deep Modeling of Users and Items Using Reviews for Recommendation, pp. 425–433 (2017). https://doi.org/10.1145/3018661.3018665

  16. Paradarami, T.K.; Bastian, N.D.; Wightman, J.L.: A hybrid recommender system using artificial neural networks. Expert Syst. Appl. 83, 300–313 (2017). https://doi.org/10.1016/j.eswa.2017.04.046

    Article  Google Scholar 

  17. Wang, X.; He, X.; Nie, L.; Chua, T.-S.: Item Silk Road: Recommending Items from Information Domains to Social Users, pp. 185–194 (2017). https://doi.org/10.1145/3077136.3080771

  18. Zhu, H.; Li, X.; Zhang, P.; Li, G.; He, J.; Li, H.; Gai, K.: Learning Tree-based Deep Model for Recommender Systems. (2018). https://doi.org/10.1145/3219819.3219826

    Article  Google Scholar 

  19. Lu, Y.; Dong, R.; Smyth, B.: Coevolutionary Recommendation Model: Mutual Learning between Ratings and Reviews. Www, pp. 773–782 (2018). https://doi.org/10.1145/3178876.3186158

  20. Oh, K.J.; Lee, W.J.; Lim, C.G.; Choi, H.J.: Personalized news recommendation using classified keywords to capture user preference. In: The International Conference on Advance and Communcations Technologies ICACT, pp. 1283–1287 (2014). https://doi.org/10.1109/ICACT.2014.6779166

  21. Song, Y.; Elkahky, A.M.; He, X.: Multi-rate deep learning for temporal recommendation. In: SIGIR 2016 - Proceedings of 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 909–912 (2016). https://doi.org/10.1145/2911451.2914726

  22. Kumar, V.; Khattar, D.; Gupta, S.; Gupta, M.; Varma, V.: User profiling based deep neural network for temporal news recommendation. IEEE International Conference on Data Mining Work. ICDMW. 2017-Novem, pp. 765–772 (2017). https://doi.org/10.1109/ICDMW.2017.106

  23. Cao, S.; Yang, N.; Liu, Z.: Online news recommender based on stacked auto-encoder. In:Proceedings of - 16th IEEE/ACIS International Conference on Computational Science ICIS 2017, pp. 721–726 (2017). https://doi.org/10.1109/ICIS.2017.7960088

  24. Park, K.; Lee, J.; Choi, J.: Deep Neural Networks for News Recommendations. In: Proceedings of 2017 ACM Conference on Information and Knowledge Management - CIKM’17, pp. 2255–2258 (2017). https://doi.org/10.1145/3132847.3133154

  25. Shani, G.; Heckerman, D.; Brafman, R.I.; Liebman, E.; Saar-Tsechansky, M.; Stone, P.; Zhao, X.; Zhang, L.; Ding, Z.; Yin, D.; Zhao, Y.; Tang, J.; Feng, J.; Li, H.; Huang, M.; Liu, S.; Ou, W.; Wang, Z.; Zhu, X.; Cai, Q.; Filos-Ratsikas, A.; Tang, P.; Zhang, Y.; Zheng, G.; Zhang, F., Zheng, Z.; Xiang, Y.; Yuan, N.J.; Xie, X.; Li, Z.; Mahmood, T.; Ricci, F.; Taghipour, N.; Kardan, A.; Ghidary, S.S.; Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J.; Chapelle, O.; Wu, Q.; Wang, H.; Hong, L.; Shi, Y.; Zhou, M.; Ding, Z.; Tang, J.; Yin, D.; Du, N.; Wang, Y.; He, N.; Sun, J.; Song, L.; Kapoor, K.; Subbian, K.; Srivastava, J.; Schrater, P.; Zhao, X.; Xia, L.; Zhang, L.; Ding, Z.; Yin, D.; Tang, J.; Xia, L.; Tang, J.; Yin, D.; Chen, S.-Y.; Yu, Y.; Da, Q.; Tan, J.; Huang, H.-K.; Tang, H.-H.; Shi, J.-C.; Yu, Y.; Da, Q.; Chen, S.-Y.; Zeng, A.-X.: DRN: A Deep Reinforcement Learning Framework for News Recommendation. In: Proceedings of 2018 World Wide Web Conf. World Wide Web. 6, 113–120 (2018). https://doi.org/10.1145/3178876.3185994

  26. Yi, B.; Shen, X.; Zhang, Z.; Shu, J.; Liu, H.: Expanded autoencoder recommendation framework and its application in movie recommendation. In: Ski. 2016 - 2016 10th International Conference on Software, Knowledge, Information Managements Applcations, pp. 298–303 (2017). https://doi.org/10.1109/SKIMA.2016.7916236

  27. Vuurens, J.B.P.; Larson, M.; De Vries, A.P.: Exploring deep space: Learning personalized ranking in a semantic space. In: ACM International Conference on Proceeding Series, 15-Septemb, pp. 23–28 (2016). https://doi.org/10.1145/2988450.2988457

  28. Zhao, C.; Shi, J.; Jiang, T.; Zhao, J.; Chen, J.: Application of deep belief nets for collaborative filtering. 2016 16th Int. Symp. Commun. Inf. Technol. Isc. 2016. 201–205 (2016). https://doi.org/10.1109/ISCIT.2016.7751621

  29. Sottocornola, G.; Stella, F.; Zanker, M., Canonaco, F.: Towards a deep learning model for hybrid recommendation. In:Proceedings of Int. Conf. Web Intell. - WI’17. 1260–1264 (2017). https://doi.org/10.1145/3106426.3110321

  30. Taheri, S.M.; Irajian, I.: DeepMovRS: A unified framework for deep learning-based movie recommender systems. 2018 6th Iran. Jt. Congr. Fuzzy Intell. Syst. 200–204 (2018). https://doi.org/10.1109/CFIS.2018.8336633

  31. Fu, M.; Qu, H.; Yi, Z.; Lu, L.; Liu, Y.: A Novel Deep Learning-Based Collaborative Filtering Model for Recommendation System. IEEE Trans. Cybern. 1–13 (2018). https://doi.org/10.1109/TCYB.2018.2795041

  32. Yuan, J.; Shalaby, W.; Korayem, M.; Lin, D.; AlJadda, K.; Luo, J.: Solving Cold-Start Problem in Large-scale Recommendation Engines: {A} Deep Learning Approach. CoRR. abs/1611.0, 1901–1910 (2016)

  33. Chen, W.; Zhang, X.; Wang, H.; Xu, H.: Hybrid deep collaborative filtering for job recommendation. 2017 2nd IEEE Int. Conf. Comput. Intell. Appl. ICCIA 2017. 2017-Janua, 275–280 (2017). https://doi.org/10.1109/CIAPP.2017.8167222

  34. Nguyen, T.T.; Lauw, H.W.: Collaborative Topic Regression with Denoising AutoEncoder for Content and Community Co-Representation. In:Proceedings of 2017 ACM Conference on Information and Knowledge Management - CIKM’17. 2231–2234 (2017). https://doi.org/10.1145/3132847.3133128

  35. Wei, J.; He, J.; Chen, K.; Zhou, Y.; Tang, Z.: Collaborative filtering and deep learning based recommendation system for cold start items. Expert Syst. Appl. 69, 1339–1351 (2017). https://doi.org/10.1016/j.eswa.2016.09.040

    Article  Google Scholar 

  36. Zhang, Y.; Yin, H.; Huang, Z.; Du, X.; Yang, G.; Lian, D.: Discrete Deep Learning for Fast Content-Aware Recommendation. In:Proceedings of Elev. ACM Int. Conf. Web Search Data Min. - WSDM’18. 717–726 (2018). https://doi.org/10.1145/3159652.3159688

  37. Tan, Y.K.; Xu, X.; Liu, Y.: Improved Recurrent Neural Networks for Session-based Recommendations (2016). https://doi.org/10.1145/2988450.2988452

  38. Hidasi, B.; Quadrana, M.; Karatzoglou, A.; Tikk, D.: Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations. In:Proceedings of 10th ACM Conference Recommendations Systems - RecSys’16, pp. 241–248 (2016). https://doi.org/10.1145/2959100.2959167

  39. Greenstein-Messica, A.; Rokach, L.; Friedman, M.: Session-Based Recommendations Using Item Embedding. In:Proceedings of 22nd Int. Conf. Intell. User Interfaces - IUI’17. 629–633 (2017). https://doi.org/10.1145/3025171.3025197

  40. Chatzis, S.P.; Christodoulou, P.; Andreou, A.S.: Recurrent Latent Variable Networks for Session-Based Recommendation. In:Proceedings of 2nd Workshop on Deep Learning based Recommender System - DLRS 2017. 38–45 (2017). https://doi.org/10.1145/3125486.3125493

  41. Ruocco, M.; Skrede, O.S.L.; Langseth, H.: Inter-Session Modeling for Session-Based Recommendation (2017). https://doi.org/10.1145/3125486.3125491

    Article  Google Scholar 

  42. Wang, X.; Wang, Y.: Improving Content-based and Hybrid Music Recommendation using Deep Learning. In: Proceedings of ACM Int. Conf. Multimed. - MM’14. 627–636 (2014). https://doi.org/10.1145/2647868.2654940

  43. Chiliguano, P.; Fazekas, G.: Hybrid music recommender using content-based and social information. ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc. 2016-May, 2618–2622 (2016). https://doi.org/10.1109/ICASSP.2016.7472151

  44. Oramas, S.; Nieto, O.; Sordo, M.; Serra, X.: A Deep Multimodal Approach for Cold-start Music Recommendation. In:Proceedings of 2nd Workshop on Deep Learning based Recommender System - DLRS 2017. 32–37 (2017). https://doi.org/10.1145/3125486.3125492

  45. Jiang, M.; Yang, Z.; Zhao, C.: What to play next? A RNN-based music recommendation system. Conf. Rec. 51st Asilomar Conf. Signals, Syst. Comput. ACSSC 2017. 2017-Octob, 356–358 (2018). https://doi.org/10.1109/ACSSC.2017.8335200

  46. Florez, O.U.; Nachman, L.: Deep Learning of Semantic Word Representations to Implement a Content-based Recommender for the RecSys Challenge’ 14. 1–5

  47. Kim, D.; Park, C.; Oh, J.; Yu, H.: Deep hybrid recommender systems via exploiting document context and statistics of items. Inf. Sci. (Ny) 417, 72–87 (2017). https://doi.org/10.1016/j.ins.2017.06.026

    Article  Google Scholar 

  48. Kim, D.; Park, C.; Oh, J.; Lee, S.; Yu, H.: Convolutional Matrix Factorization for Document Context-Aware Recommendation. In:Proceedings of 10th ACM Conference Recommendations Systems. - RecSys’16. 233–240 (2016). https://doi.org/10.1145/2959100.2959165

  49. Bansal, T.; Belanger, D.; McCallum, A.: Ask the GRU. In:Proceedings of 10th ACM Conference Recommendations Systems. - RecSys’16. 107–114 (2016). https://doi.org/10.1145/2959100.2959180

  50. Wang, X.; Yu, L.; Ren, K.; Tao, G.; Zhang, W.; Yu, Y.; Wang, J.: Dynamic Attention Deep Model for Article Recommendation by Learning Human Editors’ Demonstration. In:Proceedings of 23rd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. - KDD’17, pp. 2051–2059 (2017). https://doi.org/10.1145/3097983.3098096

  51. Lei, C.; Liu, D.; Li, W.; Zha, Z.-J.; Li, H.: Comparative Deep Learning of Hybrid Representations for Image Recommendations, pp. 2545–2553 (2016). https://doi.org/10.1109/CVPR.2016.279

  52. Wang, J.; Kawagoe, K.: Ukiyo-e Recommendation based on Deep Learning For Learning Japanese Art and Culture. In:Proceedings of 2017 International Conference on Information Syst. Data Min. - ICISDM’17. 119–123 (2017). https://doi.org/10.1145/3077584.3077612

  53. Peska, L.; Trojanova, H.: Towards Recommender Systems for Police Photo Lineup. In:Proceedings of 2nd Workshop on Deep Learning based Recommender System - DLRS 2017. 19–23 (2017). https://doi.org/10.1145/3125486.3125490

  54. Deng, S.; Huang, L.; Xu, G.; Wu, X.; Wu, Z.: On Deep Learning for Trust-Aware Recommendations in Social Networks. IEEE Trans. Neural Networks Learn. Syst. 28, 1164–1177 (2017). https://doi.org/10.1109/TNNLS.2016.2514368

    Article  Google Scholar 

  55. Dang, Q.V.; Ignat, C.L.: DTrust: A Simple Deep Learning Approach for Social Recommendation. In:Proceedings of - 2017 IEEE 3rd Int. Conf. Collab. Internet Comput. CIC 2017. 2017-Janua, 209–218 (2017). https://doi.org/10.1109/CIC.2017.00036

  56. Rafailidis, D.; Crestani, F.: Recommendation with Social Relationships via Deep Learning. In:Proceedings of ACM SIGIR Int. Conf. Theory Inf. Retr. - ICTIR’17. 151–158 (2017). https://doi.org/10.1145/3121050.3121057

  57. Tomar, A.; Godin, F.; Vandersmissen, B.; De Neve, W.; Van De Walle, R.: Towards Twitter hashtag recommendation using distributed word representations and a deep feed forward neural network. In:Proceedings of 2014 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2014. 362–368 (2014). https://doi.org/10.1109/ICACCI.2014.6968557

  58. Zuo, Y.; Zeng, J.; Gong, M.; Jiao, L.: Tag-aware recommender systems based on deep neural networks. Neurocomputing. 204, 51–60 (2016). https://doi.org/10.1016/j.neucom.2015.10.134

    Article  Google Scholar 

  59. Xu, Z.; Chen, C.; Lukasiewicz, T.; Miao, Y.; Meng, X.: Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling. In:Proceedings of 25th ACM International Conference on Information and Knowledge Management - CIKM’16. 1921–1924 (2016). https://doi.org/10.1145/2983323.2983874

  60. Wang, F.; Qu, Y.; Zheng, L.; Lu, C.T.; Yu, P.S.: Deep and Broad Learning on Content-Aware POI Recommendation. In:Proceedings of - 2017 IEEE 3rd Int. Conf. Collab. Internet Comput. CIC 2017. 2017-Janua, 369–378 (2017). https://doi.org/10.1109/CIC.2017.00054

  61. Yin, H.; Wang, W.; Wang, H.; Chen, L.; Zhou, X.: Spatial-Aware Hierarchical Collaborative Deep Learning for POI Recommendation. IEEE Trans. Knowl. Data Eng. 29, 2537–2551 (2017). https://doi.org/10.1109/TKDE.2017.2741484

    Article  Google Scholar 

  62. Xia, B.; Li, Y.; Li, Q.; Li, T.: Attention-based recurrent neural network for location recommendation. In:Proceedings of 2017 12th Int. Conf. Intell. Syst. Knowl. Eng. ISKE 2017. 2018-Janua, 1–6 (2018). https://doi.org/10.1109/ISKE.2017.8258747

  63. Ebesu, T.; Fang, Y.: Neural Citation Network for Context-Aware Citation Recommendation. In:Proceedings of 40th International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR’17. 1093–1096 (2017). https://doi.org/10.1145/3077136.3080730

  64. Huck-Fries, V.; Wiegand, F.; Klinker, K.; Wiesche, M.; Krcmar, H.: Reranking-based Recommender System with Deep Learning. Inform. 2017. 585–596 (2017). https://doi.org/10.18420/in2017

  65. Hassan, H.A.M.: Personalized Research Paper Recommendation using Deep Learning. In:Proceedings of 25th Conf. User Model. Adapt. Pers. - UMAP’17. 327–330 (2017). https://doi.org/10.1145/3079628.3079708

  66. Suglia, A.; Greco, C.; Musto, C.; de Gemmis, M.; Lops, P.; Semeraro, G.: A Deep Architecture for Content-based Recommendations Exploiting Recurrent Neural Networks. In:Proceedings of 25th Conf. User Model. Adapt. Pers. - UMAP’17. 202–211 (2017). https://doi.org/10.1145/3079628.3079684

  67. Smirnova, E.; Vasile, F.: Contextual Sequence Modeling for Recommendation with Recurrent Neural Networks. (2017). https://doi.org/10.1145/3125486.3125488

    Article  Google Scholar 

  68. Verma, M.; Ganguly, D.: LiRME: Locally interpretable ranking model explanation. SIGIR 2019 - Proc. 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval 1281–1284 (2019). https://doi.org/10.1145/nnnnnnn.nnnnnnn

  69. Hongliang, C.; Xiaona, Q.: The video recommendation system based on DBN. In:Proceedings of - 15th IEEE The International Conference on Information and Computer Technologies CIT 2015, 14th IEEE Int. Conf. Ubiquitous Comput. Commun. IUCC 2015, 13th IEEE Int. Conf. Dependable, Auton. Se. 1016–1021 (2015). https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.154

  70. Covington, P.; Adams, J.; Sargin, E.: Deep Neural Networks for YouTube Recommendations. ACM Conference Recommendations Systems. 191–198 (2016). https://doi.org/10.1145/2959100.2959190

  71. Lee, H.; Ahn, Y.; Lee, H.; Ha, S.; Lee, S.: Quote Recommendation in Dialogue using Deep Neural Network. In:Proceedings of 39th International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR’16. 957–960 (2016). https://doi.org/10.1145/2911451.2914734

  72. Tan, J.; Wan, X.; Xiao, J.: A Neural Network Approach to Quote Recommendation in Writings. In:Proceedings of 25th ACM International Conference on Information and Knowledge Management - CIKM’16. 65–74 (2016). https://doi.org/10.1145/2983323.2983788

  73. Zhang, H.; Yang, H.; Huang, T.; Zhan, G.: DBNCF: Personalized courses recommendation system based on DBN in MOOC environment. In:Proceedings of - 2017 Int. Symp. Educ. Technol. ISET 2017. 106–108 (2017). https://doi.org/10.1109/ISET.2017.33

  74. Wang, X.; Zhang, Y.; Yu, S.; Liu, X.; Yuan, Y.; Wang, F.Y.: E-learning recommendation framework based on deep learning. 2017 IEEE Int. Conf. Syst. Man, Cybern. SMC 2017. 2017-Janua, 455–460 (2017). https://doi.org/10.1109/SMC.2017.8122647

  75. Li, P.; Wang, Z.; Ren, Z.; Bing, L.; Lam, W.: Neural Rating Regression with Abstractive Tips Generation for Recommendation. 345–354 (2017). https://doi.org/10.1145/3077136.3080822

  76. Maheshwary, S.; Misra, H.: Matching Resumes to Jobs via Deep Siamese Network. Companion Proc. Web Conf. 2018, 87–88 (2018). https://doi.org/10.1145/3184558.3186942

    Article  Google Scholar 

  77. Jaradat, S.: Deep Cross-Domain Fashion Recommendation. In:Proceedings of Elev. ACM Conference Recommendations Systems. - RecSys’17. 407–410 (2017). https://doi.org/10.1145/3109859.3109861

  78. Jiang, S.; Wu, Y.; Fu, Y.: 5 Deep Bidirectional Cross-Triplet Embedding for Online Clothing Shopping. ACM Trans. Multimed. Comput. Commun. Appl. Artic. 14, 1–22 (2018). https://doi.org/10.1145/3152114

  79. Webb, T.; Harnden, D.G.: The transformation by simian virus 40 of cells from patients with mucopolysaccharidosis and from normal controls. Cancer Res. 36, 203–212 (1976)

    Google Scholar 

  80. Zahalka, J.; Rudinac, S.; Worring, M.: Interactive multimodal learning for venue recommendation. IEEE Trans. Multimed. 17, 2235–2244 (2015). https://doi.org/10.1109/TMM.2015.2480007

    Article  Google Scholar 

  81. Gao, T.; Li, X.; Chai, Y.; Tang, Y.: Deep learning with consumer preferences for recommender system. 2016 IEEE International Conference on Information Autom. IEEE ICIA 2016. 1556–1561 (2017). https://doi.org/10.1109/ICInfA.2016.7832066

  82. Dai, H.; Wang, Y.; Trivedi, R.; Song, L.: Recurrent coevolutionary latent feature processes for continuous-time recommendation. ACM Int. Conf. Proceeding Ser. 15-Septemb, 29–34 (2016). https://doi.org/10.1145/2988450.2988451

  83. Dominguez, V.; Messina, P.; Parra, D.; Mery, D.; Trattner, C.; Soto, A.: Comparing Neural and Attractiveness-based Visual Features for Artwork Recommendation. In:Proceedings of 2nd Workshop on Deep Learning based Recommender System - DLRS 2017. 55–59 (2017). https://doi.org/10.1145/3125486.3125495

  84. Soh, H.; Sanner, S.; White, M.; Jamieson, G.: Deep Sequential Recommendation for Personalized Adaptive User Interfaces. In:Proceedings of 22nd Int. Conf. Intell. User Interfaces - IUI’17. 589–593 (2017). https://doi.org/10.1145/3025171.3025207

  85. Jishan, S.T.; Wang, Y.: Audience Activity Recommendation Using Stacked-LSTM Based Sequence Learning. In:Proceedings of 9th Int. Conf. Mach. Learn. Comput. - ICMLC 2017. 98–106 (2017). https://doi.org/10.1145/3055635.3056606

  86. Wu, H.; Zhang, Z.; Yue, K.; Zhang, B.; He, J.; Sun, L.: Dual-regularized matrix factorization with deep neural networks for recommender systems. Knowledge-Based Syst. 145, 1–14 (2018). https://doi.org/10.1016/j.knosys.2018.01.003

    Article  Google Scholar 

  87. Yuan, W.; Li, C.; Guan, D.; Han, G.; Khattak, A.M.: Socialized healthcare service recommendation using deep learning. Neural Comput. Appl. 30, 2071–2082 (2018). https://doi.org/10.1007/s00521-018-3394-4

    Article  Google Scholar 

  88. Katzman, J.L.; Shaham, U.; Cloninger, A.; Bates, J.; Jiang, T.; Kluger, Y.: DeepSurv: Personalized Treatment Recommender System Using A Cox Proportional Hazards Deep Neural Network. 1–12 (2018). https://doi.org/10.1186/s12874-018-0482-1

  89. Wang, H.; Yeung, D.: IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING Towards Bayesian Deep Learning: A Framework and Some Existing Methods. 1–14

  90. Bai, T.; Wen, J.-R.; Zhang, J.; Zhao, W.X.: A Neural Collaborative Filtering Model with Interaction-based Neighborhood. In:Proceedings of 2017 ACM Conference on Information and Knowledge Management - CIKM’17. 1979–1982 (2017). https://doi.org/10.1145/3132847.3133083

  91. He, X.; Chua, T.-S.: Neural Factorization Machines for Sparse Predictive Analytics. 355–364 (2017). https://doi.org/10.1145/3077136.3080777

  92. Lee, W.; Song, K.; Moon, I.-C.: Augmented Variational Autoencoders for Collaborative Filtering with Auxiliary Information. In:Proceedings of 2017 ACM Conference on Information and Knowledge Management - CIKM’17. 1139–1148 (2017). https://doi.org/10.1145/3132847.3132972

  93. Zhang, W.; Liu, F.; Jiang, L.; Xu, D.: Recommendation based on collaborative filtering by convolution deep learning model based on label weight nearest neighbor. In:Proceedings of - 2017 10th Int. Symp. Comput. Intell. Des. Isc. 2017. 2, 504–507 (2018). https://doi.org/10.1109/ISCID.2017.235

  94. Liu, J.; Wang, D.: PHD : A Probabilistic Model of Hybrid Deep Collaborative Filtering for Recommender Systems. Acml. 1–16 (2017)

  95. Xue, H.J.; Dai, X.Y.; Zhang, J.; Huang, S.; Chen, J.: Deep matrix factorization models for recommender systems. IJCAI Int. Jt. Conf. Artif. Intell. 3203–3209 (2017). https://doi.org/10.24963/ijcai.2017/447

  96. Tay, Y.; Luu, A.T.; Hui, S.C.: Latent Relational Metric Learning via Memory-based Attention for Collaborative Ranking. 729–739 (2017). https://doi.org/10.1145/3178876.3186154

  97. Dong, X.; Yu, L.; Wu, Z.; Sun, Y.; Yuan, L.; Zhang, F.: A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems. In:Proceedings of 31st AAAI Conf. Artif. Intell. 1309–1315 (2017). https://doi.org/10.1103/PhysRevLett.93.077207

  98. Catherine, R.; Cohen, W.: TransNets: Learning to Transform for Recommendation. 288–296 (2017). https://doi.org/10.1145/3109859.3109878

  99. Preethi, G.; Krishna, P.V.; Obaidat, M.S.; Saritha, V.; Yenduri, S.: Application of deep learning to sentiment analysis for recommender system on cloud. IEEE CITS 2017 - 2017 Int. Conf. Comput. Inf. Telecommun. Syst. 93–97 (2017). https://doi.org/10.1109/CITS.2017.8035341

  100. Serrà, J.; Karatzoglou, A.: Getting deep recommenders fit: Bloom embeddings for sparse binary input/output networks. 279–287 (2017). https://doi.org/10.1145/3109859.3109876

  101. Wei, J.; He, J.; Chen, K.; Zhou, Y.; Tang, Z.: Collaborative Filtering and Deep Learning Based Hybrid Recommendation for Cold Start Problem. In:Proceedings of - 2016 IEEE 14th Int. Conf. Dependable, Auton. Secur. Comput. DASC 2016, 2016 IEEE 14th Int. Conf. Pervasive Intell. Comput. PICom 2016, 2016 IEEE 2nd Int. Conf. Big Data. 874–877 (2016). https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.149

  102. Wang, H.; Wang, N.; Yeung, D.-Y.: Collaborative Deep Learning for Recommender Systems, pp. 1235–1244 (2014). https://doi.org/10.1145/2783258.2783273

  103. Li, Q.; Zheng, X.; Wu, X.: Collaborative Autoencoder for Recommender Systems, pp. 305–314 (2017). https://doi.org/10.1145/3097983.3098077

  104. Cheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.; Anil, R.; Haque, Z.; Hong, L.; Jain, V.; Liu, X.; Shah, H.: Wide & Deep Learning for Recommender Systems. (2016). https://doi.org/10.1145/2988450.2988454

    Article  Google Scholar 

  105. Chen, C.; Zhao, P.; Li, L.; Zhou, J.; Li, X.; Qiu, M.: Locally Connected Deep Learning Framework for Industrial-scale Recommender Systems. In:Proceedings of 26th International Conference on World Wide Web Companion - WWW’17 Companion, pp. 769–770 (2017). https://doi.org/10.1145/3041021.3054227

  106. Da’u, A.; Salim, N.; Rabiu, I.; Osman, A.: Recommendation system exploiting aspect-based opinion mining with deep learning method. Inf. Sci. (Ny). 512, 1279–1292 (2020). https://doi.org/10.1016/j.ins.2019.10.038

  107. Zhang, S.; Yao, L.; Sun, A.; Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. 52, 1–35 (2019). https://doi.org/10.1145/3285029

    Article  Google Scholar 

  108. Bobadilla, J.; Alonso, S.; Hernando, A.: Deep learning architecture for collaborative filtering recommender systems. Appl. Sci. (2020). https://doi.org/10.3390/app10072441

  109. Zarzour, H.; Al-Sharif, Z.A.; Jararweh, Y.: RecDNNing: A recommender system using deep neural network with user and item embeddings. 2019 10th International Conference on Information Commun. Syst. ICICS 2019. 99–103 (2019). https://doi.org/10.1109/IACS.2019.8809156

  110. Fessahaye, F.; Perez, L.; Zhan, T.; Zhang, R.; Fossier, C.; Markarian, R.; Chiu, C.; Zhan, J.; Gewali, L.; Oh, P.: T-RECSYS: a novel music recommendation system using deep learning. In: 2019 IEEE International Conference on Consumer Electronics. ICCE 2019. (2019). https://doi.org/10.1109/ICCE.2019.8662028

  111. Lee, H.; Lee, J.: Scalable deep learning-based recommendation systems. ICT Express. 5, 84–88 (2019). https://doi.org/10.1016/j.icte.2018.05.003

    Article  Google Scholar 

  112. Nimirthi, P.; Venkata Krishna, P.; Obaidat, M.S.; Saritha, V.: A framework for sentiment analysis based recommender system for agriculture using deep learning approach. SpringerBriefs Appl. Sci. Technol. (2019). https://doi.org/10.1007/978-981-13-1456-8_5

  113. Nweke, H.F.; Teh, Y.W.; Al-garadi, M.A.; Alo, U.R.: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges. Expert Syst. Appl. 105, 233–261 (2018). https://doi.org/10.1016/j.eswa.2018.03.056

    Article  Google Scholar 

  114. Zheng, L.: A survey and critique of deep learning on recommender systems. (2016)

  115. Da’u, A.; Salim, N.; Rabiu, I.; Osman, A.: Weighted aspect-based opinion mining using deep learning for recommender system. Expert Syst. Appl. (2020). https://doi.org/10.1016/j.eswa.2019.112871

  116. Wang, S.; Huang, C.; Li, J.; Yuan, Y.; Wang, F.Y.: Decentralized construction of knowledge graphs for deep recommender systems based on blockchain-powered smart contracts. IEEE Access. 7, 136951–136961 (2019). https://doi.org/10.1109/ACCESS.2019.2942338

    Article  Google Scholar 

  117. Huang, Z.; Tang, J.; Shan, G.; Ni, J.; Chen, Y.; Wang, C.: An efficient passenger-hunting recommendation framework with multitask deep learning. IEEE Internet Things J. 6, 7713–7721 (2019). https://doi.org/10.1109/JIOT.2019.2901759

    Article  Google Scholar 

  118. Vincent, P.; Larochelle, H.: Extracting and Composing Robust Features with Denoising.pdf. 1096–1103 (2008)

  119. Zhang, X.; Zhong, J.; Liu, K.: Wasserstein autoencoders for collaborative filtering. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-05117-w

    Article  Google Scholar 

  120. Deng, X.; Huangfu, F.: Collaborative variational deep learning for healthcare recommendation. IEEE Access. 7, 55679–55688 (2019). https://doi.org/10.1109/ACCESS.2019.2913468

    Article  Google Scholar 

  121. Pan, Y.; He, F.; Yu, H.: Learning social representations with deep autoencoder for recommender system. World Wide Web 23, 2259–2279 (2020). https://doi.org/10.1007/s11280-020-00793-z

    Article  Google Scholar 

  122. Saravanan, B.; Mohanraj, V.; Senthilkumar, J.: A fuzzy entropy technique for dimensionality reduction in recommender systems using deep learning. Soft. Comput. 23, 2575–2583 (2019). https://doi.org/10.1007/s00500-019-03807-9

    Article  Google Scholar 

  123. Guan, Y.; Wei, Q.; Chen, G.: Deep learning based personalized recommendation with multi-view information integration. Decis. Support Syst. 118, 58–69 (2019). https://doi.org/10.1016/j.dss.2019.01.003

    Article  Google Scholar 

  124. Wang, K.; Xu, L.; Huang, L.; Wang, C.D.; Lai, J.H.: SDDRS: stacked discriminative denoising auto-encoder based recommender system. Cogn. Syst. Res. 55, 164–174 (2019). https://doi.org/10.1016/j.cogsys.2019.01.011

    Article  Google Scholar 

  125. Zhang, Y.; Yin, C.; Wu, Q.; He, Q.; Zhu, H.: Location-aware deep collaborative filtering for service recommendation. IEEE Trans. Syst. Man, Cybern. Syst. (2019). https://doi.org/10.1109/tsmc.2019.2931723

  126. Ahamed, M.T.; Afroge, S.: A Recommender System Based on Deep Neural Network and Matrix Factorization for Collaborative Filtering. 2nd Int. Conf. Electr. Comput. Commun. Eng. ECCE 2019. 1–5 (2019). https://doi.org/10.1109/ECACE.2019.8679125

  127. Nassar, N.; Jafar, A.; Rahhal, Y.: A novel deep multi-criteria collaborative filtering model for recommendation system. Knowl.-Based Syst. 187, 104811 (2020). https://doi.org/10.1016/j.knosys.2019.06.019

    Article  Google Scholar 

  128. Feinman, R.: A Deep Belief Network Approach to Learning Depth From Optical Flow, pp. 1–14

  129. Pacheco, A.G.C.; Krohling, R.A.; da Silva, C.A.S.: Restricted Boltzmann machine to determine the input weights for extreme learning machines. Expert Syst. Appl. 96, 77–85 (2018). https://doi.org/10.1016/j.eswa.2017.11.054

    Article  Google Scholar 

  130. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  131. Hinton, G.E.; Osindero, S.; Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006). https://doi.org/10.1162/neco.2006.18.7.1527

    Article  MathSciNet  MATH  Google Scholar 

  132. Luo, L.; Zhang, S.; Wang, Y.; Peng, H.: An alternate method between generative objective and discriminative objective in training classification Restricted Boltzmann Machine. Knowl.-Based Syst. 144, 144–152 (2018). https://doi.org/10.1016/j.knosys.2017.12.032

    Article  Google Scholar 

  133. Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017). https://doi.org/10.1016/j.neucom.2016.12.038

    Article  Google Scholar 

  134. Hidasi, B.; Karatzoglou, A.: Recurrent Neural Networks with Top-k Gains for Session-Based Recommendations, pp. 370–371 (2017). https://doi.org/10.1145/3269206.3271761

  135. Da’U, A.; Salim, N.: Sentiment-aware deep recommender system with neural attention networks. IEEE Access. 7, 45472–45484 (2019). https://doi.org/10.1109/ACCESS.2019.2907729

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Katarya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, G., Katarya, R. Research on Understanding the Effect of Deep Learning on User Preferences. Arab J Sci Eng 46, 3247–3286 (2021). https://doi.org/10.1007/s13369-020-05112-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05112-2

Keywords

Navigation