Skip to main content
Log in

\(H_{\infty }\) Performance-Based Sliding Mode Control Approach for Load Frequency Control of Interconnected Power System with Time Delay

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a sliding mode control (SMC) approach to design \(H_{\infty }\) performance-based load frequency controller for interconnected power system (IPS) with time delay. Incorporating an artificial delay, a sliding surface function is designed to enhance dynamic performance of the power system. Linear matrix inequality-based stabilization criterion is derived using Lyapunov–Krasovskii functional for multi-area power system. A novel SMC law is designed with artificial delay to drive the system trajectory into the predefined sliding surface. The applicability of the proposed controller is proved by considering a two-area time-delay IPS. Performance of the controller is verified from the simulation study of the time-delay IPS with proposed controller in MATLAB/Simulink. Then, the controller performance is verified in real time by using OPAL-RT OP4510 digital simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adhikari, S.; Karki, R.; Piya, P.: Recovery risk mitigation of wind integrated bulk power system with flywheel energy storage. IEEE Trans. Power Syst. 34, 3484 (2019)

    Article  Google Scholar 

  2. Zhao, X.; Sun, Y.; Li, N.; Wei, Z.; Sun, G.; Huang, C.: Robust \({H_{\infty }}\) load frequency control of delayed multi-area power system with stochastic disturbances. Neurocomputing 193, 58 (2016)

    Article  Google Scholar 

  3. Ju, P.; Handschin, E.; Karlsson, D.: Nonlinear dynamic load modelling: model and parameter estimation. IEEE Trans. Power Syst. 11(4), 1689 (1996)

    Article  Google Scholar 

  4. Kundur, P.; Balu, N.J.; Lauby, M.G.: Power System Stability and Control, vol. 7. McGraw-hill, New York (1994)

    Google Scholar 

  5. Lu, K.; Zhou, W.; Zeng, G.; Zheng, Y.: Constrained population extremal optimization-based robust load frequency control of multi-area interconnected power system. Int. J. Electr. Power Energy Syst. 105, 249 (2019)

    Article  Google Scholar 

  6. Su, X.; Liu, X.; Song, Y.D.: Event-triggered sliding-mode control for multi-area power systems. IEEE Trans. Industr. Electron. 64(8), 6732 (2017)

    Article  Google Scholar 

  7. Li, M.; Chen, Y.: A wide-area dynamic damping controller based on robust \({H_{\infty }}\) control for wide-area power systems with random delay and packet dropout. IEEE Trans. Power Syst. 33(4), 4026 (2018)

    Article  Google Scholar 

  8. Sun, Y.; Wang, Y.; Wei, Z.; Sun, G.; Wu, X.: Robust \({H_{\infty }}\) load frequency control of multi-area power system with time delay: a sliding mode control approach. IEEE/CAA J. Autom. Sinica 5(2), 610 (2018)

    Article  MathSciNet  Google Scholar 

  9. Sheirah, M.; Abd-El-Fattah, M.: Improved load-frequency self-tuning regulator. Int. J. Control 39(1), 143 (1984)

    Article  Google Scholar 

  10. Toulabi, M.; Shiroei, M.; Ranjbar, A.: Robust analysis and design of power system load frequency control using the Kharitonov’s theorem. Int. J. Electr. Power Energy Syst. 55, 51 (2014)

    Article  Google Scholar 

  11. Lim, K.; Wang, Y.; Zhou, R.: Robust decentralised load-frequency control of multi-area power systems. IEE Proc. Generation Transm. Distribution 143(5), 377 (1996)

    Article  Google Scholar 

  12. Dong, L.; Zhang, Y.; Gao, Z.: A robust decentralized load frequency controller for interconnected power systems. ISA Trans. 51(3), 410 (2012)

    Article  Google Scholar 

  13. Zribi, M.; Al-Rashed, M.; Alrifai, M.: Adaptive decentralized load frequency control of multi-area power systems. Int. J. Electr. Power Energy Syst. 27(8), 575 (2005)

    Article  Google Scholar 

  14. Sivaramakrlshnan, A.; Hariharan, M.; Srisailam, M.: Design of variable-structure load-frequency controller using pole assignment technique. Int. J. Control 40(3), 487 (1984)

    Article  MathSciNet  Google Scholar 

  15. Sudha, K.; Santhi, R.V.: Robust decentralized load frequency control of interconnected power system with generation rate constraint using type-2 fuzzy approach. Int. J. Electr. Power Energy Syst. 33(3), 699 (2011)

    Article  Google Scholar 

  16. Daneshfar, F.; Bevrani, H.: Multiobjective design of load frequency control using genetic algorithms. Int. J. Electr. Power Energy Syst. 42(1), 257 (2012)

    Article  Google Scholar 

  17. Saikia, L.C.; Mishra, S.; Sinha, N.; Nanda, J.: Automatic generation control of a multi area hydrothermal system using reinforced learning neural network controller. Int. J. Electr. Power Energy Syst. 33(4), 1101 (2011)

    Article  Google Scholar 

  18. Sathya, M.; Ansari, M.M.T.: Load frequency control using Bat inspired algorithm based dual mode gain scheduling of PI controllers for interconnected power system. Int. J. Electr. Power Energy Syst. 64, 365 (2015)

    Article  Google Scholar 

  19. Gu, K.; Chen, J.; Kharitonov, V.L.: Stability of time-delay systems. In: Stability of Time-Delay Systems. Springer, Berlin (2003)

  20. Das, D.K.: New results on delay-dependent stability analysis and stabilization of time-delay systems. Ph.D. thesis (2015)

  21. Yu, X.; Tomsovic, K.: Application of linear matrix inequalities for load frequency control with communication delays. IEEE Trans. Power Syst. 19(3), 1508 (2004)

    Article  Google Scholar 

  22. Dey, R.; Ghosh, S.; Ray, G.; Rakshit, A.: \({H_{\infty }}\) load frequency control of interconnected power systems with communication delays. Int. J. Electr. Power Energy Syst. 42(1), 672 (2012)

    Article  Google Scholar 

  23. Xiong, L.; Li, H.; Wang, J.: LMI based robust load frequency control for time delayed power system via delay margin estimation. Int. J. Electr. Power Energy Syst. 100, 91 (2018)

    Article  Google Scholar 

  24. Bevrani, H.; Hiyama, T.: Robust decentralised PI based LFC design for time delay power systems. Energy Convers. Manage. 49(2), 193 (2008)

    Article  Google Scholar 

  25. Bevrani, H.; Mitani, Y.; Tsuji, K.: Robust decentralised load-frequency control using an iterative linear matrix inequalities algorithm. IEE Proc. Generation Transm. Distribution 151(3), 347 (2004)

    Article  Google Scholar 

  26. Jiang, L.; Yao, W.; Wu, Q.; Wen, J.; Cheng, S.: Delay-dependent stability for load frequency control with constant and time-varying delays. IEEE Trans. Power Syst. 27(2), 932 (2012)

    Article  Google Scholar 

  27. Zhang, C.K.; Jiang, L.; Wu, Q.; He, Y.; Wu, M.: Delay-dependent robust load frequency control for time delay power systems. IEEE Trans. Power Syst. 28(3), 2192 (2013)

    Article  Google Scholar 

  28. Abdallah, C.T.; Sipahi, R.; Niculescu, S.J.; Michiels, W.; Gu, K.: Stability and stabilization of systems with time delay: limitations and opportunities. IEEE Trans. Control Syst. Technol. 31(1), 38 (2011)

    Article  MathSciNet  Google Scholar 

  29. Huschto, T.; Feichtinger, G.; Hartl, R.F.; Kort, P.M.; Sager, S.; Seidl, A.: Numerical solution of a conspicuous consumption model with constant control delay. Automatica 47(9), 1868 (2011)

    Article  MathSciNet  Google Scholar 

  30. Das, D.K.; Ghosh, S.; Subudhi, B.: Tolerable delay-margin improvement for systems with input-output delays using dynamic delayed feedback controllers. Appl. Math. Comput. 230, 57 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Abu-Khalaf, M.; Huang, J.; Lewis, F.L.: Nonlinear H2/H-Infinity Constrained Feedback Control: A Practical Design Approach Using Neural Networks. Springer, Berlin (2006)

    MATH  Google Scholar 

  32. Bevrani, H.; Feizi, M.R.; Ataee, S.: Robust frequency control in an Islanded microgrid: \(H_ \infty \) and \( {\mu } \)-synthesis approaches. IEEE Trans. Smart Grid 7(2), 706 (2015)

    Google Scholar 

  33. Liang, H.; Li, G.; Li, G.; Li, P.; Yin, M.: Analysis and design of H\(_\infty \) controller in VSC HVDC systems. In: 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific. IEEE, pp. 1–6 (2005)

  34. Pradhan, S.K.; Das, D.K.: H\(_\infty \) Load frequency control design based on delay discretization approach for interconnected power systems with time delay. J. Modern Power Syst. Clean Energy (2020)

  35. Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A.: Sliding Mode Control and Observation. Springer, Berlin (2014)

    Book  Google Scholar 

  36. Prasad, S.; Purwar, S.; Kishor, N.: H-infinity based non-linear sliding mode controller for frequency regulation in interconnected power systems with constant and time-varying delays. IET Generation Transm. Distribution 10(11), 2771 (2016)

    Article  Google Scholar 

  37. Mi, Y.; Hao, X.; Liu, Y.; Fu, Y.; Wang, C.; Wang, P.; Loh, P.C.: Sliding mode load frequency control for multi-area time-delay power system with wind power integration. IET Generation Transm. Distribution 11(18), 4644 (2017)

    Article  Google Scholar 

  38. Mi, Y.; Fu, Y.; Wang, C.; Wang, P.: Decentralized sliding mode load frequency control for multi-area power systems. IEEE Trans. Power Syst. 28(4), 4301 (2013)

    Article  Google Scholar 

  39. Qian, D.; Tong, S.; Liu, H.; Liu, X.: Load frequency control by neural-network-based integral sliding mode for nonlinear power systems with wind turbines. Neurocomputing 173, 875 (2016)

    Article  Google Scholar 

  40. Das, D.K.; Ghosh, S.; Subudhi, B.: An improved robust stability analysis for systems with two delays by extracting overlapping feature. J. Control Decision 2(2), 124 (2015)

    Article  MathSciNet  Google Scholar 

  41. Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory, vol. 15. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  42. Obaiah, M.C.; Subudhi, B.: A delay-dependent anti-windup compensator for wide-area power systems with time-varying delays and actuator saturation. IEEE/CAA J. Autom. Sinica 7(1), 106 (2019)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dushmanta Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, S.K., Das, D.K. \(H_{\infty }\) Performance-Based Sliding Mode Control Approach for Load Frequency Control of Interconnected Power System with Time Delay. Arab J Sci Eng 46, 1369–1382 (2021). https://doi.org/10.1007/s13369-020-05178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05178-y

Keywords

Navigation