Skip to main content

Advertisement

Log in

Numerical Simulation of Coal Combustion in a Tangential Pulverized Boiler: Effect of Burner Vertical Tilt Angle

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Understanding of the flow field and heat transfer in a boiler is important to meet with the often-conflicting objectives of efficient steam generation, safe operation and minimization of pollutant emissions. Steam generation requires high gas temperatures, which often lead to high NOx emissions. High gas temperatures inside the boiler may also lead to slagging and fouling problems, which adversely affect the heat transfer to the steam side. One of the principal ways of finding a compromise in tangentially fired pulverized coal (PC) boilers, which constitute the majority of the utility boilers, is through tilting the burners. The current work seeks to obtain a detailed understanding of the effect of burner tilt on the flow and heat transfer inside the boiler by utilizing numerical simulations. Computational fluid dynamics (CFD) simulations were performed on a 210 MWe tangentially fired pulverized coal boiler to understand the impact of two vertical burner tilt angles, − 15° and + 15°. The effect of burner tilt was investigated by analyzing the effect on gas flow, temperature distribution, coal particle trajectories and NOx emissions. The results suggest that a downward tilt of the burner (− 15°) has a significant effect on the particle trajectories and the residence time of the particle in the high temperature burner zone. The temperature of the exit gas was reduced by 33 K due to the downward tilt. NOx emissions were reduced by about 5.5% when the burners were tilted downward by 15° which be attributed to two factors, namely the relatively insignificant contribution of thermal NOx mechanism in utility boilers and the role of NOx reburning in reducing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. International Energy Agency: Coal 2018: Analysis and Forecasts to 2023. (2018)

  2. Khalafalla, S.S.; Zahid, U.; Abdul Jameel, A.G.; Ahmed, U.; Alenazey, F.S.; Lee, C.: Conceptual design development of coal-to-methanol process with carbon capture and utilization. Energies 13, 6421 (2020). https://doi.org/10.3390/en13236421

    Article  Google Scholar 

  3. Tuli, V.; Khera, A.: India: Towards Energy Independence 2030. McKinsey Co., London (2014)

    Google Scholar 

  4. Ministry of Power Government of India: Power Sector at a Glance, India

  5. Abdul Jameel, A.G.; Han, Y.; Brignoli, O.; Telalović, S.; Elbaz, A.M.; Im, H.G.; Roberts, W.L.; Sarathy, S.M.: Heavy fuel oil pyrolysis and combustion: Kinetics and evolved gases investigated by TGA-FTIR. J. Anal. Appl. Pyrolysis. 127, 183–195 (2017). https://doi.org/10.1016/j.jaap.2017.08.008

    Article  Google Scholar 

  6. Jassim, E.I.: CFD modeling of toxic element evolved during coal combustion. Arab. J. Sci. Eng. 40, 3665–3674 (2015). https://doi.org/10.1007/s13369-015-1792-9

    Article  Google Scholar 

  7. Anetor, L.; Osakue, E.E.; Odetunde, C.: Thermoeconomic optimization of a 450 MW natural gas burning steam power plant. Arab. J. Sci. Eng. 41, 4643–4659 (2016). https://doi.org/10.1007/s13369-016-2227-y

    Article  Google Scholar 

  8. Pourhoseini, S.H.; Saeedi, A.; Moghiman, M.: Experimental and numerical study on the effect of soot injection on NOx reduction and radiation enhancement in a natural gas turbulent flame. Arab. J. Sci. Eng. 38, 69–75 (2013). https://doi.org/10.1007/s13369-012-0412-1

    Article  Google Scholar 

  9. Naser, N.; Abdul Jameel, A.G.; Emwas, A.-H.; Singh, E.; Chung, S.H.; Sarathy, S.M.: The influence of chemical composition on ignition delay times of gasoline fractions. Combust. Flame. 209, 418–429 (2019). https://doi.org/10.1016/J.COMBUSTFLAME.2019.07.030

    Article  Google Scholar 

  10. Campuzano, F.; Abdul Jameel, A.G.; Zhang, W.; Emwas, A.; Agudelo, A.F.; Martínez, J.D.; Sarathy, S.M.: On the distillation of waste tire pyrolysis oil: a structural characterization of the derived fractions. Fuel 290, 120041 (2021). https://doi.org/10.1016/j.fuel.2020.120041

    Article  Google Scholar 

  11. Campuzano, F.; Abdul Jameel, A.G.; Zhang, W.; Emwas, A.-H.; Agudelo, A.F.; Martínez, J.D.; Sarathy, S.M.: Fuel and chemical properties of waste tire pyrolysis oil derived from a continuous twin-auger reactor. Energy Fuels 34, 12688–12702 (2020). https://doi.org/10.1021/acs.energyfuels.0c02271

    Article  Google Scholar 

  12. Elbaz, A.M.; Gani, A.; Hourani, N.; Emwas, A.-H.; Sarathy, S.M.; Roberts, W.L.: TG/DTG, FT-ICR mass spectrometry, and NMR spectroscopy study of heavy fuel oil. Energy Fuels 29, 7825–7835 (2015). https://doi.org/10.1021/acs.energyfuels.5b01739

    Article  Google Scholar 

  13. Abdul Jameel, A.G., Alkhateeb, A., Telalović, S., Elbaz, A.M., Roberts, W.L., Sarathy, S.M.: Environmental Challenges and Opportunities in Marine Engine Heavy Fuel Oil Combustion. In: Proceedings of the Fourth International Conference in Ocean Engineering. pp. 1047–1055. Springer (2019)

  14. Abdul Jameel, A.G.; Khateeb, A.; Elbaz, A.M.; Emwas, A.-H.; Zhang, W.; Roberts, W.L.; Sarathy, S.M.: Characterization of deasphalted heavy fuel oil using APPI (+) FT-ICR mass spectrometry and NMR spectroscopy. Fuel 253, 950–963 (2019). https://doi.org/10.1016/J.FUEL.2019.05.061

    Article  Google Scholar 

  15. Ben-Manosur, R.; Ahmed, P.; Habib, M.A.: Simulation of oxy-fuel combustion of heavy oil fuel in a model furnace. J. Energy Resour. Technol. 137, 04018059 (2015). https://doi.org/10.1115/1.4029007

    Article  Google Scholar 

  16. Abdul, J.A.G.; Alquaity, A.B.S.; Campuzano, F.; Emwas, A.; Saxena, S.; Sarathy, S.M.; Roberts, W.L.: Surrogate formulation and molecular characterization of sulfur species in vacuum residues using APPI and ESI FT-ICR mass spectrometry. Fuel 293, 120471 (2021). https://doi.org/10.1016/j.fuel.2021.120471

    Article  Google Scholar 

  17. Abdul Jameel, A.G., Sarathy, S.M.: Lube Products: Molecular Characterization of Base Oils. In: Encyclopedia of Analytical Chemistry. pp. 1–14. Wiley, Chichester (2018)

  18. Olenik, G.; Stein, O.T.; Kronenburg, A.: LES of swirl-stabilised pulverised coal combustion in IFRF furnace No. 1. Proc. Combust. Inst. 35, 2819–2828 (2015). https://doi.org/10.1016/j.proci.2014.06.149

    Article  Google Scholar 

  19. Stein, O.T.; Olenik, G.; Kronenburg, A.; Cavallo Marincola, F.; Franchetti, B.M.; Kempf, A.M.; Ghiani, M.; Vascellari, M.; Hasse, C.: Towards comprehensive coal combustion modelling for LES. Flow Turbul. Combust. 90, 859–884 (2013). https://doi.org/10.1007/s10494-012-9423-y

    Article  Google Scholar 

  20. Zhang, C.; Ren, Z.; Hao, D.; Zhang, T.: Numerical simulation of particle size influence on the breakage mechanism of broken coal. Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04693-2

    Article  Google Scholar 

  21. Wang, G.; Yang, X.; Chu, X.; Shen, J.; Jiang, C.: Microscale numerical simulation of non-darcy flow of coalbed methane. Arab. J. Sci. Eng. 43, 2547–2561 (2018). https://doi.org/10.1007/s13369-017-2802-x

    Article  Google Scholar 

  22. Prabu, V.; Jayanti, S.: Simulation of cavity formation in underground coal gasification using bore hole combustion experiments. Energy 36, 5854–5864 (2011). https://doi.org/10.1016/j.energy.2011.08.037

    Article  Google Scholar 

  23. BP: BP Energy Outlook-2019 Insights from the Evolving transition scenario-India

  24. Jayanti, S.; Saravanan, V.; Sivaji, S.: Assessment of retrofitting possibility of an Indian pulverized coal boiler for operation with Indian coals in oxy-coal combustion mode with CO2 sequestration. Proc. Inst. Mech. Eng. Part A J. Power Energy 226, 1003–1013 (2012). https://doi.org/10.1177/0957650912459465

    Article  Google Scholar 

  25. Saravanan, V.; Shivakumar, R.; Jayanti, S.; Ramakrishna, S.S.: Evaluation of the effect of the concentration of CO2 on the overall reactivity of drop tube furnace derived indian sub-bituminous coal chars during CO2/O2 combustion. Ind. Eng. Chem. Res. 50, 12865–12871 (2011). https://doi.org/10.1021/ie1019358

    Article  Google Scholar 

  26. Baroncelli, M.; Felsmann, D.; Hansen, N.; Pitsch, H.: Investigating the effect of oxy-fuel combustion and light coal volatiles interaction: a mass spectrometric study. Combust. Flame. 204, 320–330 (2019). https://doi.org/10.1016/j.combustflame.2019.03.017

    Article  Google Scholar 

  27. Kumar, M.; Sahu, S.G.: Study on the effect of the operating condition on a pulverized coal-fired furnace using computational fluid dynamics commercial code. Energy Fuels 21, 3189–3193 (2007). https://doi.org/10.1021/ef7004173

    Article  Google Scholar 

  28. Hwang, Y.L.; Howell, J.R.: Local furnace data and modeling comparison for a 600-MWe coal-fired utility boiler. J. Energy Resour. Technol. Trans. ASME. 124, 56–66 (2002). https://doi.org/10.1115/1.1447543

    Article  Google Scholar 

  29. Tian, D.; Zhong, L.; Tan, P.; Ma, L.; Fang, Q.; Zhang, C.; Zhang, D.; Chen, G.: Influence of vertical burner tilt angle on the gas temperature deviation in a 700 MW low NOx tangentially fired pulverised-coal boiler. Fuel Process. Technol. 138, 616–628 (2015). https://doi.org/10.1016/j.fuproc.2015.07.002

    Article  Google Scholar 

  30. Fang, Q.; Wang, H.; Zhou, H.; Lei, L.; Duan, X.: Improving the performance of a 300 MW down-fired pulverized-coal utility boiler by inclining downward the F-layer secondary air. Energy Fuels 24, 4857–4865 (2010)

    Article  Google Scholar 

  31. Li, S.; Xu, T.; Hui, S.; Wei, X.: NOx emission and thermal efficiency of a 300 MWe utility boiler retrofitted by air staging. Appl. Energy. 86, 1797–1803 (2009)

    Article  Google Scholar 

  32. Badzioch, S.; Hawksley, P.G.W.: Kinetics of thermal decomposition of pulverized coal particles. Ind. Eng. Chem. Process Des. Dev. 9, 521–530 (1970)

    Article  Google Scholar 

  33. Field, M.A.: Measurements of the effect of rank on combustion rates of pulverized coal. Combust. Flame. 14, 237–248 (1970). https://doi.org/10.1016/S0010-2180(70)80035-9

    Article  Google Scholar 

  34. Jayanti, S.; Maheswaran, K.; Saravanan, V.: Assessment of the effect of high ash content in pulverized coal combustion. Appl. Math. Model. 31, 934–953 (2007). https://doi.org/10.1016/j.apm.2006.03.022

    Article  MATH  Google Scholar 

  35. De Soete, G.: Various parameters influencing nitric oxide formation in gasoline and diesel engines, and emission control techniques. (1974)

  36. Yin, C.; Caillat, S.; Harion, J.-L.; Baudoin, B.; Perez, E.: Investigation of the flow, combustion, heat-transfer and emissions from a 609 MW utility tangentially fired pulverized-coal boiler. Fuel 81, 997–1006 (2002)

    Article  Google Scholar 

  37. Zhou, H.; Mo, G.; Si, D.; Cen, K.: Numerical simulation of the NOx emissions in a 1000 MW tangentially fired pulverized coal boiler: influence of the multi-group arrangement of the separated over fire air. Energy Fuels 25, 2004–2012 (2011). https://doi.org/10.1021/ef200227r

    Article  Google Scholar 

  38. Park, H.Y.; Baek, S.H.; Kim, Y.J.; Kim, T.H.; Kang, D.S.; Kim, D.W.: Numerical and experimental investigations on the gas temperature deviation in a large scale, advanced low NOx, tangentially fired pulverized coal boiler. Fuel 104, 641–646 (2013)

    Article  Google Scholar 

  39. Belosevic, S.; Sijercic, M.; Tucakovic, D.; Crnomarkovic, N.: A numerical study of a utility boiler tangentially-fired furnace under different operating conditions. Fuel 87, 3331–3338 (2008)

    Article  Google Scholar 

  40. Saravanan, V., Aravind, A., Jayanti, S., Ramakrishna: Burning Profile of High Ash Indian Coals in Oxy-Fuel Environment. In: Volume 3: Combustion Science and Engineering. pp. 119–131. ASMEDC (2008)

  41. Pei, X.; Abdul Jameel, A.G.; Chen, C.; AlGhamdi, I.A.; AlAhmadi, K.; AlBarakati, E.; Saxena, S.; Roberts, W.L.: Swirling flame combustion of heavy fuel oil: effect of fuel sulfur content. J. Energy Resour. Technol. 143, 1–16 (2021). https://doi.org/10.1115/1.4048942

    Article  Google Scholar 

Download references

Acknowledgements

The authors at KFUPM would like to acknowledge and thank the support received from the Deanship of Scientific Research (DSR). The authors at IIT Madras gratefully acknowledge the support of IIT Madras in carrying out the CFD simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Gani Abdul Jameel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul Jameel, A.G., Dahiphale, C., Alquaity, A.B.S. et al. Numerical Simulation of Coal Combustion in a Tangential Pulverized Boiler: Effect of Burner Vertical Tilt Angle. Arab J Sci Eng 47, 5647–5660 (2022). https://doi.org/10.1007/s13369-021-05613-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05613-8

Keywords

Navigation