Skip to main content
Log in

Numerical Investigation of Seismic Isolation Layer Performance for Tunnel Lining in Shanghai Soft Ground

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An isolation layer around the cross-section of a tunnel lining would be the simplest and most effective shock absorption measure which can reduce the intensity of seismic action and minimise the deformation transferred from surrounding soil to the tunnel lining. This study explored the effectiveness of foamed concrete and silicone rubber as potential seismic isolation layers in clay soft soil. A 2D finite element model was proposed to accurately predict the seismic response of the tunnel. Experimental data collected from Shanghai metropolitan tunnel were used to validate the developed model. Different tunnel lining and seismic isolation characteristics, as well as tunnel buried depths, were considered for each seismic isolation layer. It was revealed that the silicone rubber considerably reduced the deformation of the tunnel lining under a seismic load and can therefore be used in a seismic design of a tunnel in soft clay soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

The proposed numerical model, data used in plots and tables and other materials used in this study can be collected from the corresponding author upon reasonable request.

References

  1. Huo, H.; Bobet, A.; Fernández, G.; Ramirez, J.: Load transfer mechanisms between underground structure and surrounding ground: evaluation of the failure of the Daikai station. J. Geotech. Geoenviron. Eng. 131(12), 1522–1533 (2005)

    Article  Google Scholar 

  2. Li, T.: Damage to mountain tunnels related to the Wenchuan earthquake and some suggestions for aseismic tunnel construction. Bull. Eng. Geol. Env. 71(2), 297–308 (2012)

    Article  Google Scholar 

  3. Wang, W.; Wang, T.; Su, J.; Lin, C.; Seng, C.; Huang, T.: Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake. Tunn. Undergr. Space Technol. 16(3), 133–150 (2001)

    Article  Google Scholar 

  4. Wang, Z.; Zhang, Z.: Seismic damage classification and risk assessment of mountain tunnels with a validation for the 2008 Wenchuan earthquake. Soil Dyn. Earthq. Eng. 45, 45–55 (2013)

    Article  Google Scholar 

  5. Zhang, X.; Jiang, Y.; Sugimoto, S.: Seismic damage assessment of mountain tunnel: a case study on the Tawarayama tunnel due to the 2016 Kumamoto Earthquake. Tunn. Undergr. Space Technol. 71, 138–148 (2018)

    Article  Google Scholar 

  6. Wang, Z.; Jiang, Y.; Zhu, C.: Seismic energy response and damage evolution of tunnel lining structures. Eur. J. Environ. Civ. Eng. 23(6), 758–770 (2019)

    Article  Google Scholar 

  7. Power, M.; Rosidi, D.; Kaneshiro, J.; Gilstrap, S.; Chiou, S.: Summary and evaluation of procedures for the seismic design of tunnels. Final report for task (1998)

  8. Sharma, S.; Judd, W.R.: Underground opening damage from earthquakes. Eng. Geol. 30(3–4), 263–276 (1991)

    Article  Google Scholar 

  9. Lanzano, G.; Bilotta, E.; Russo, G.; Silvestri, F.: Experimental and numerical study on circular tunnels under seismic loading. Eur. J. Environ. Civ. Eng. 19(5), 539–563 (2015)

    Article  Google Scholar 

  10. Owen, G.N.; Scholl, R.E.: Earthquake engineering of large underground structures (1981)

  11. Wang, J.N.: Seismic Design of Tunnels: A State-of-the-Art Approach. Monograph 7. Parsons Brinckerhoff Quade & Douglas, New York (1993)

    Google Scholar 

  12. Penzien, J.; Wu, C.L.: Stresses in linings of bored tunnels. Earthq. Eng. Struct. Dyn. 27(3), 283–300 (1998)

    Article  Google Scholar 

  13. Cilingir, U.; Madabhushi, S.G.: Effect of depth on seismic response of circular tunnels. Can. Geotech. J. 48(1), 117–127 (2010)

    Article  Google Scholar 

  14. Cilingir, U.; Madabhushi, S.G.: A model study on the effects of input motion on the seismic behaviour of tunnels. Soil Dyn. Earthq. Eng. 31(3), 452–462 (2011)

    Article  Google Scholar 

  15. Cilingir, U.; Madabhushi, S.G.: Effect of depth on the seismic response of square tunnels. Soils Found. 51(3), 449–457 (2011)

    Article  Google Scholar 

  16. Tsinidis, G.; Pitilakis, K.; Madabhushi, G.; Heron, C.: Dynamic response of flexible square tunnels: centrifuge testing and validation of existing design methodologies. Geotechnique 65(5), 401–417 (2015)

    Article  Google Scholar 

  17. Tsinidis, G.; Rovithis, E.; Pitilakis, K.; Chazelas, J.L.: Seismic response of box-type tunnels in soft soil: experimental and numerical investigation. Tunn. Undergr. Space Technol. 59, 199–214 (2016)

    Article  Google Scholar 

  18. Kontoe, S.; Avgerinos, V.; Potts, D.: Numerical validation of analytical solutions and their use for equivalent-linear seismic analysis of circular tunnels. Soil Dyn. Earthq. Eng. 66, 206–219 (2014)

    Article  Google Scholar 

  19. Kontoe, S.; Zdravkovic, L.; Potts, D.; Menkiti, C.: On the relative merits of simple and advanced constitutive models in dynamic analysis of tunnels. Géotechnique. 61(10), 815–829 (2011)

    Article  Google Scholar 

  20. Amorosi, A.; Boldini, D.: Numerical modelling of the transverse dynamic behaviour of circular tunnels in clayey soils. Soil Dyn. Earthq. Eng. 29(6), 1059–1072 (2009)

    Article  Google Scholar 

  21. Debiasi, E.; Gajo, A.; Zonta, D.: On the seismic response of shallow-buried rectangular structures. Tunn. Undergr. Space Technol. 38, 99–113 (2013)

    Article  Google Scholar 

  22. Patil, M.; Choudhury, D.; Ranjith, P.; Zhao, J.: A numerical study on effects of dynamic input motion on response of tunnel-soil system. In: Proceeding of the 16th World Conference on Earthquake Engineering (16th WCEE 2017), Santiago, Chile, Paper ID2017

  23. Bobet, A.; Fernandez, G.; Huo, H.; Ramirez, J.: A practical iterative procedure to estimate seismic-induced deformations of shallow rectangular structures. Can. Geotech. J. 45(7), 923–938 (2008)

    Article  Google Scholar 

  24. Bobet, A.: Drained and undrained response of deep tunnels subjected to far-field shear loading. Tunn. Undergr. Space Technol. 25(1), 21–31 (2010)

    Article  Google Scholar 

  25. Ma, S.; Chen, W.; Zhao, W.: Mechanical properties and associated seismic isolation effects of foamed concrete layer in rock tunnel. J. Rock Mech. Geotech. Eng. 11(1), 159–171 (2019)

    Article  Google Scholar 

  26. Li, C.; Chen, W.: Seismic isolation effect of foamed concrete layer along the longitudinal direction of a mountainous tunnel. Vibroeng. Proc. 23, 76–80 (2019)

    Article  Google Scholar 

  27. Xu, H.; Li, T.; Xia, L.; Zhao, J.X.; Wang, D.: Shaking table tests on seismic measures of a model mountain tunnel. Tunn. Undergr. Space Technol. 60, 197–209 (2016)

    Article  Google Scholar 

  28. Patil, M.; Choudhury, D.; Ranjith, P.; Zhao, J.: Behavior of shallow tunnel in soft soil under seismic conditions. Tunn. Undergr. Space Technol. 82, 30–38 (2018)

    Article  Google Scholar 

  29. Sun, Q.; Dias, D.; e Sousa, L.R.: Soft soil layer-tunnel interaction under seismic loading. Tunn. Undergr. Space Technol. 98, 103329 (2020)

    Article  Google Scholar 

  30. Chen, Z.; Liang, S.; Shen, H.; He, C.: Dynamic centrifuge tests on effects of isolation layer and cross-section dimensions on shield tunnels. Soil Dyn. Earthq. Eng. 109, 173–187 (2018)

    Article  Google Scholar 

  31. Chen, Z.; Shen, H.: Dynamic centrifuge tests on isolation mechanism of tunnels subjected to seismic shaking. Tunn. Undergr. Space Technol. 42, 67–77 (2014)

    Article  Google Scholar 

  32. Zhou, H.; Wang, X.; He, C.; Huang, C.: Seismic response of a tunnel embedded in compacted clay through large-scale shake table testing. Shock. Vib. 2018, 5968431 (2018). https://doi.org/10.1155/2018/5968431

    Article  Google Scholar 

  33. Zhang, D.-M.; Huang, Z.-K.; Wang, R.-L.; Yan, J.-Y.; Zhang, J.: Grouting-based treatment of tunnel settlement: practice in Shanghai. Tunn. Undergr. Space Technol. 80, 181–196 (2018)

    Article  Google Scholar 

  34. Yang, L.D.; Wang, G.B.; Liu, Q.J.; Lei, G.: A study on the dynamic properties of soft soil in Shanghai. In: Soil and Rock Behavior and Modeling, pp. 466–473 (2006)

  35. Fei, H.C.; Wu, Y.W.; Woods, R.D.: Dynamic Properties of Soft Ground in Shanghai (1991)

  36. Gu, X.; Lu, L.; Yang, J.; Wu, X.: Laboratory measurements of the dynamic properties of Shanghai Clay. In: International Symposium on Environmental Vibration and Transportation Geodynamics, pp. 585–592. Springer (2016)

  37. Huang, Z.-K.; Pitilakis, K.; Tsinidis, G.; Argyroudis, S.; Zhang, D.-M.: Seismic vulnerability of circular tunnels in soft soil deposits: the case of Shanghai metropolitan system. Tunn. Undergr. Space Technol. 98, 103341 (2020)

    Article  Google Scholar 

  38. Mayne, P.W.; Rix, G.J.: Correlations between shear wave velocity and cone tip resistance in natural clays. Soils Found. 35(2), 107–110 (1995)

    Article  Google Scholar 

  39. Iyisan, R.: Correlations between shear wave velocity and in-situ penetration test results. Teknik Dergi-tmmob Insaat Muhendisleri Odasi 7, 371–374 (1996)

    Google Scholar 

  40. Tün, M.: Investigation of the characteristics of Eskişehir soils due to shear wave velocity and determination of their fundamental vibration periods (Doctoral dissertation, Dissertation, Department of Physics, Anadolu University Institute of Science and Technology, Turkey: Dissertation, Department of Physics, Anadolu University Institute of Science (2003)

  41. Wair, B.R.; DeJong, J.T.; Shantz, T.: Guidelines for Estimation of Shear Wave Velocity Profiles. Pacific Earthquake Engineering Research Center (2012)

  42. Abaqus, G.: Abaqus 6.11. Dassault Systemes Simulia Corp Providence, RI, USA (2011)

  43. Gomes, R.C.; Gouveia, F.; Torcato, D.; Santos, J.: Seismic response of shallow circular tunnels in two-layered ground. Soil Dyn. Earthq. Eng. 75, 37–43 (2015)

    Article  Google Scholar 

  44. Do, N.-A.; Dias, D.; Oreste, P.; Djeran-Maigre, I.: 2D numerical investigation of segmental tunnel lining behavior. Tunn. Undergr. Space Technol. 37, 115–127 (2013)

    Article  Google Scholar 

  45. Argyroudis, S.; Tsinidis, G.; Gatti, F.; Pitilakis, K.: Effects of SSI and lining corrosion on the seismic vulnerability of shallow circular tunnels. Soil Dyn. Earthq. Eng. 98, 244–256 (2017)

    Article  Google Scholar 

  46. Gelagoti, F.; Kourkoulis, R.; Anastasopoulos, I.; Gazetas, G.: Rocking isolation of low-rise frame structures founded on isolated footings. Earthq. Eng. Struct. Dynam. 41(7), 1177–1197 (2012)

    Article  Google Scholar 

  47. Zhang, D.; Huang, Z.; Yin, Z.; Ran, L.; Huang, H.: Predicting the grouting effect on leakage-induced tunnels and ground response in saturated soils. Tunn. Undergr. Space Technol. 65, 76–90 (2017)

    Article  Google Scholar 

  48. Argyroudis, S.; Pitilakis, K.: Seismic fragility curves of shallow tunnels in alluvial deposits. Soil Dyn. Earthq. Eng. 35, 1–12 (2012)

    Article  Google Scholar 

  49. Huang, H.-W.; Zhang, Y.-J.; Zhang, D.-M.; Ayyub, B.M.: Field data-based probabilistic assessment on degradation of deformational performance for shield tunnel in soft clay. Tunn. Undergr. Space Technol. 67, 107–119 (2017)

    Article  Google Scholar 

  50. Avanaki, M.J.; Hoseini, A.; Vahdani, S.; de Santos, C.; de la Fuente, A.: Seismic fragility curves for vulnerability assessment of steel fiber reinforced concrete segmental tunnel linings. Tunn. Undergr. Space Technol. 78, 259–274 (2018)

    Article  Google Scholar 

  51. Avanaki, M.J.; Hoseini, A.; Vahdani, S.; de la Fuente, A.: Numerical-aided design of fiber reinforced concrete tunnel segment joints subjected to seismic loads. Constr. Build. Mater. 170, 40–54 (2018)

    Article  Google Scholar 

  52. Lysmer, J.; Kuhlemeyer, R.L.: Finite dynamic model for infinite media. J .Eng. Mech. Div. 95(4), 859–877 (1969)

    Article  Google Scholar 

  53. Hwang, J.-H.; Lu, C.-C.: Seismic capacity assessment of old Sanyi railway tunnels. Tunn. Undergr. Space Technol. 22(4), 433–449 (2007)

    Article  Google Scholar 

  54. Tsinidis, G.; Pitilakis, K.; Anagnostopoulos, C.: Circular tunnels in sand: dynamic response and efficiency of seismic analysis methods at extreme lining flexibilities. Bull. Earthq. Eng. 14(10), 2903–2929 (2016)

    Article  Google Scholar 

  55. Seed, H.B.; Wong, R.T.; Idriss, I.; Tokimatsu, K.: Moduli and damping factors for dynamic analyses of cohesionless soils. J. Geotech. Eng. 112(11), 1016–1032 (1986)

    Article  Google Scholar 

  56. Kokusho, T.; Yoshida, Y.; Esashi, Y.: Dynamic properties of soft clay for wide strain range. Soils Found. 22(4), 1–18 (1982)

    Article  Google Scholar 

  57. Brennan, A.; Thusyanthan, N.; Madabhushi, S.: Evaluation of shear modulus and damping in dynamic centrifuge tests. J. Geotech. Geoenviron. Eng. 131(12), 1488–1497 (2005)

    Article  Google Scholar 

  58. Lubliner, J.; Oliver, J.; Oller, S.; Oñate, E.: A plastic-damage model for concrete. Int. J. Sol. Struct. 25(3), 299–326 (1989)

    Article  Google Scholar 

  59. Lee, J.; Fenves, G.L.: Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 124(8), 892–900 (1998)

    Google Scholar 

  60. Raj, A.; Sathyan, D.; Mini, K.: Physical and functional characteristics of foam concrete: a review. Constr. Build. Mater. 221, 787–799 (2019)

    Article  Google Scholar 

  61. Amran, Y.M.; Farzadnia, N.; Ali, A.A.: Properties and applications of foamed concrete; a review. Constr. Build. Mater. 101, 990–1005 (2015)

    Article  Google Scholar 

  62. Zhao, W.; Chen, W.; Tan, X.; Huang, S.: Study on foamed concrete used as seismic isolation material for tunnels in rock. Mater. Res. Innov. 17(7), 465–472 (2013)

    Article  Google Scholar 

  63. Li, C.; Chen, W.; Zhao, W.; Suzuki, T.; Shishikura, Y.: A Study on seismic isolation of shield tunnel using quasi-static finite element method. Shock and Vibration (2019)

  64. Assogba, O.C., Tan, Y.; Sun, Z.; Lushinga, N.; Bin, Z.: Effect of vehicle speed and overload on dynamic response of semi-rigid base asphalt pavement. Road Mater. Pavement Des. 22(8), 1–31 (2019). https://doi.org/10.1080/14680629.2019.1614970

    Article  Google Scholar 

  65. Assogba, O.C.; Sun, Z.; Tan, Y.; Nonde, L.; Bin, Z.: Finite-element simulation of instrumented asphalt pavement response under moving vehicular load. Int. J. Geomech. 20(3), 04020006 (2020)

    Article  Google Scholar 

  66. Lv, H.; Liu, H.; Tan, Y.; Meng, A.; Assogba, O.C.; Xiao, S.: An extended search method for identifying optimal parameters of the generalized Maxwell model. Constr. Build. Mater. 266, 120796 (2021)

    Article  Google Scholar 

  67. Li, G.; Gong, J.-m; Tan, J.-z; Zhu, D.-s; Jia, W.-h: Stress relaxation behavior and life prediction of gasket materials used in proton exchange membrane fuel cells. J. Cent. South Univ. 26(3), 623–631 (2019)

    Article  Google Scholar 

  68. Li, G.; Gong, J.; Tan, J.; Zhu, D.; Jia, W.: Study on mechanical properties of silicone rubber materials used as gaskets in PEM fuel cell environment. Proc. ICPNS 16, 1–6 (2016)

    Google Scholar 

  69. Assogba, O.C.; Tan, Y.; Zhou, X.; Zhang, C.; Anato, J.N.: Numerical investigation of the mechanical response of semi-rigid base asphalt pavement under traffic load and nonlinear temperature gradient effect. Constr. Build. Mater. 235, 117406 (2020)

    Article  Google Scholar 

  70. Fabozzi, S.; Bilotta, E.: Behaviour of a segmental tunnel lining under seismic actions. Proc. Eng. 158, 230–235 (2016)

    Article  Google Scholar 

  71. Hatzigeorgiou, G.D.; Beskos, D.E.: Soil–structure interaction effects on seismic inelastic analysis of 3-D tunnels. Soil Dyn. Earthq. Eng. 30(9), 851–861 (2010)

    Article  Google Scholar 

  72. Haselton, C.; Whittaker, A.; Hortacsu, A.; Baker, J.; Bray, J.; Grant, D.: Selecting and scaling earthquake ground motions for performing response-history analyses. In: Proceedings of the 15th World Conference on Earthquake Engineering: Earthquake Engineering Research Institute, pp. 4207–4217 (2012)

  73. Iervolino, I.; Cornell, C.A.: Record selection for nonlinear seismic analysis of structures. Earthq. Spectra 21(3), 685–713 (2005)

    Article  Google Scholar 

  74. ASCE. Minimum design loads for buildings and other structures. American Society of Civil Engineers (2005)

  75. Kalkan, E.; Chopra, A.K.: Practical guidelines to select and scale earthquake records for nonlinear response history analysis of structures. US Geol. Surv. Open File Rep. 2010(1068), 126 (2010)

    Google Scholar 

  76. Iervolino, I.; Manfredi, G.: A review of ground motion record selection strategies for dynamic structural analysis. Mod. Test. Tech. Struct. Syst (2008). https://doi.org/10.1007/978-3-211-09445-7_3

    Article  Google Scholar 

  77. Hashash, Y.M.; Park, D.; John, I.; Yao, C.: Ovaling deformations of circular tunnels under seismic loading, an update on seismic design and analysis of underground structures. Tunn. Undergr. Space Technol. 20(5), 435–441 (2005)

    Article  Google Scholar 

  78. Kuesel, T.R.; King, E.H.; Bickel, J.O.: Tunnel Engineering Handbook. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical support provided by Harbin Institute of Technology. The authors also express their sincere gratitude to all the people involved in this research project. Finally, the authors would like to thank reviewers for useful comments and editors for improving the quality of this work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profits sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiping Tang.

Ethics declarations

conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anato, N.J., Assogba, O.C., Tang, A. et al. Numerical Investigation of Seismic Isolation Layer Performance for Tunnel Lining in Shanghai Soft Ground. Arab J Sci Eng 46, 11355–11372 (2021). https://doi.org/10.1007/s13369-021-05683-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05683-8

Keywords

Navigation