Skip to main content
Log in

On Designing Mixed Nonparametric Control Chart for Monitoring the Manufacturing Processes

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Efficient control charts are used to maintain and improve the manufacturing, industrial and service processes. Control chart is a basic tool of quality practitioners for producing products that meet market requirements in terms of quality, reliability and functionality. Lack of normality is a common occurrence in these processes. In such situations, distribution-free control charts are increasingly used for process monitoring. The nonparametric exponentially weighted moving average chart is a frequently used memory-type control chart in the process monitoring. The drawback of this chart is that it performs efficiently only on smaller values of the smoothing parameter. To compensate this drawback, a modified nonparametric exponentially weighted moving average chart under progressive setup based on sign and arcsine test statistics is proposed in this study. The prominent quality of the proposed scheme is that it performs efficiently in detecting small and persistent shifts in the process location under each choice of the smoothing parameter. The performance of the proposed chart has been investigated through simulations that use run length profiles (average run length, median run length and standard deviation of run length). When the performance of the proposed chart is compared with alternatives, its ability to detect small and persistent shifts is much better. Two real-life applications associated with hard-bake and piston rings manufacturing processes are included that show the demonstration of the proposed charts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Montgomery, D.C.: Introduction to statistical quality control, 7th edn. Wiley, New York (2012)

    MATH  Google Scholar 

  2. Shewhart, W.A.: Some applications of statistical methods to the analysis of physical and engineering data. Bell Syst. Tech. J. 3(1), 43–87 (1924)

    Article  Google Scholar 

  3. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)

    Article  MathSciNet  Google Scholar 

  4. Roberts, S.: Control chart tests based on geometric moving averages. Technometrics 1(3), 239–250 (1959)

    Article  Google Scholar 

  5. Abbas, N.; Zafar, R.F.; Riaz, M.; Hussain, Z.: Progressive mean control chart for monitoring process location parameter. Qual. Reliab. Eng. Int. 29(3), 357–367 (2013)

    Article  Google Scholar 

  6. Chakraborti, S. and Graham, M.: Nonparametric (distribution-free) control charts: An updated overview and some results. Quality Engineering, 2019: p. 1–22.

  7. Koutras, M.V.; Triantafyllou, I.S.: Recent advances on univariate distribution-free shewhart-type control charts. Distrib. Free Methods Statist. Process Monit. Control (2020). https://doi.org/10.1007/978-3-030-25081-2_1

    Article  Google Scholar 

  8. Amin, R.W.; Reynolds, M.R., Jr.; Saad, B.: Nonparametric quality control charts based on the sign statistic. Commun. Statist. Theory Methods 24(6), 1597–1623 (1995)

    Article  MathSciNet  Google Scholar 

  9. Bakir, S.T.: A distribution-free Shewhart quality control chart based on signed-ranks. Qual. Eng. 16(4), 613–623 (2004)

    Article  Google Scholar 

  10. Bakir, S.T.; Reynolds, M.R.: A nonparametric procedure for process control based on within-group ranking. Technometrics 21(2), 175–183 (1979)

    Article  Google Scholar 

  11. Yang, S.-F.; Lin, J.-S.; Cheng, S.W.: A new nonparametric EWMA sign control chart. Expert Syst. Appl. 38(5), 6239–6243 (2011)

    Article  Google Scholar 

  12. Abbas, Z.; Nazir, H.Z.; Abid, M.; Akhtar, N.; Riaz, M.: Nonparametric progressive sign chart for monitoring process location based on individual data. Qualit. Technol. Quant. Manag. (2020). https://doi.org/10.1080/16843703.2020.1827726

    Article  Google Scholar 

  13. Haq, A.: A new nonparametric synthetic EWMA control chart for monitoring process mean. Commun. Stat. Simul. Comput. 48(6), 1665–1676 (2019)

    Article  MathSciNet  Google Scholar 

  14. Haq, A.: A nonparametric EWMA chart with auxiliary information for process mean. Commun. Stat. Theory Methods 49(5), 1232–1247 (2020)

    Article  MathSciNet  Google Scholar 

  15. Ali, S.; Abbas, Z.; Nazir, H.Z.; Riaz, M.; Zhang, X.; Li, Y.: On designing non-parametric EWMA sign chart under ranked set sampling scheme with application to industrial process. Mathematics 8(9), 1497 (2020)

    Article  Google Scholar 

  16. Alevizakos, V.; Koukouvinos, C.: A progressive mean control chart for COM-Poisson distribution. Commun. Stat. Simul. Comput. (2019). https://doi.org/10.1080/03610918.2019.1659361

    Article  MATH  Google Scholar 

  17. Abbas, Z.; Nazir, H.Z.; Akhtar, N.; Riaz, M.; Abid, M.: An enhanced approach for the progressive mean control charts. Qual. Reliab. Eng. Int. 35(4), 1046–1060 (2019)

    Article  Google Scholar 

  18. Riaz, M.; Abid, M.; Abbas, Z.; Nazir, H.Z.: An enhanced approach for the progressive mean control charts: a discussion and comparative analysis. Qual. Reliab. Eng. Int. (2020). https://doi.org/10.1002/qre.2733

    Article  Google Scholar 

  19. Lucas, J.M.; Saccucci, M.S.: Exponentially weighted moving average control schemes: properties and enhancements. Technometrics 32(1), 1–12 (1990)

    Article  MathSciNet  Google Scholar 

  20. Abbas, N.; Riaz, M.; Does, R.J.: Mixed exponentially weighted moving average–cumulative sum charts for process monitoring. Qual. Reliab. Eng. Int. 29(3), 345–356 (2013)

    Article  Google Scholar 

  21. Zaman, B.; Riaz, M.; Abbas, N.; Does, R.J.: Mixed cumulative sum–exponentially weighted moving average control charts: an efficient way of monitoring process location. Qual. Reliab. Eng. Int. 31(8), 1407–1421 (2015)

    Article  Google Scholar 

  22. Abid, M.; Mei, S.; Nazir, H.Z.; Riaz, M.; Hussain, S.: A mixed HWMA-CUSUM mean chart with an application to manufacturing process. Qual. Reliab. Eng. Int. (2020). https://doi.org/10.1002/qre.2752

    Article  Google Scholar 

  23. Abbas, Z.; Nazir, H.Z.; Akhtar, N.; Riaz, M.; Abid, M.: On developing an exponentially weighted moving average chart under progressive setup: An efficient approach to manufacturing processes. Qual. Reliab. Eng. Int. (2020). https://doi.org/10.1002/qre.2716

    Article  Google Scholar 

  24. Ali, S.; Abbas, Z.; Nazir, H.Z.; Riaz, M.; Zhang, X.; Li, Y.: On developing sensitive nonparametric mixed control charts with application to manufacturing industry. Qual. Reliab. Eng. Int. (2021). https://doi.org/10.1002/qre.2885

    Article  Google Scholar 

  25. Koti, K.M.; Jogesh Babu, G.: Sign test for ranked-set sampling. Commun. Stat. Theory Methods 25(7), 1617–1630 (1996)

    Article  MathSciNet  Google Scholar 

  26. Abbasi, S.A.: Letter to the Editor: a new nonparametric EWMA sign control chart. Expert Syst. Appl. Int. J. 39(9), 8503 (2012)

    Article  Google Scholar 

  27. Abbasi, S.A.; Miller, A.; Riaz, M.: Nonparametric progressive mean control chart for monitoring process target. Qual. Reliab. Eng. Int. 29(7), 1069–1080 (2013)

    Article  Google Scholar 

  28. Riaz, M.; Abbasi, S.A.: Nonparametric double EWMA control chart for process monitoring. Rev. Colomb. Estad. 39(2), 167–184 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The aforementioned work was partially supported by National Natural Science Foundation of China (No. 11731015 and 11571148). The authors are grateful to the editor and referees for their constructive comments that led to substantial improvements in the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfa Zhang.

Appendices

Appendix

NPMEP chart is the mixture of NPEWMA and nonparametric PM chart. To derive the mean and variance of NPMEP chart, first we must know about the mean and variance of NPEWMA and nonparametric PM chart.

Appendix-A

Mean and variance of NPEWMA chart under sign test statistic. The NPEWMA statistic defined in Eq. (2) can be written as:

$$E_{{S_{t}^{ + } }} = \omega \mathop \sum \limits_{j = 1}^{t - 1} \left( {1 - \omega } \right)^{j} S_{t - j}^{ + } + \left( {1 - \omega } \right)^{t} E_{{S_{t = 0}^{ + } }} ,$$
$$\begin{aligned} E(E_{{S_{t}^{ + } }} ) = & E\left[ { \omega \mathop \sum \limits_{j = 1}^{t - 1} \left( {1 - \omega } \right)^{j} S_{t - j}^{ + } + \left( {1 - \omega } \right)^{t} E_{{S_{t = 0}^{ + } }} } \right], \\ = & \left[ { \omega \left( {1 - \left( {1 - \omega } \right)^{t} } \right)/\omega \left( {np_{0} } \right) + \left( {1 - \omega } \right)^{t} np_{0} } \right], \\ = & np_{0} \left[ { \omega \left( {1 - \left( {1 - \omega } \right)^{t} } \right)/\omega + \left( {1 - \omega } \right)^{t} } \right], \\ = & np_{0} \\ \end{aligned}$$
(A1)
$$\begin{aligned} {\text{var}} (E_{{S_{t}^{ + } }} ) = & {\text{var}} \left[ { \omega \mathop \sum \limits_{j = 1}^{t - 1} \left( {1 - \omega } \right)^{j} S_{t - j}^{ + } + \left( {1 - \omega } \right)^{t} E_{{S_{t = 0}^{ + } }} } \right], \\ = & np_{0} \left( {1 - P_{0} } \right)\omega^{2} \left[ {\left( {1 - \left( {1 - \omega } \right)^{2t} } \right)/\omega \left( {2 - \omega } \right)^{t} } \right], \\ = & \frac{\omega }{2 - \omega }\left( {1 - \left( {1 - \omega } \right)^{2t} } \right)\left( {np_{0} \left( {1 - p_{0} } \right)} \right) \\ \end{aligned}$$
(A2)

where \(p_{0} = 1/2\).

Appendix-B

Mean and variance of nonparametric PM chart. The nonparametric PM statistic defined in Eq. (5) is given as:

\({\text{NPPM}}_{{S_{t} }} = \frac{{S_{1}^{ + } + S_{2}^{ + } + \cdots + S_{t}^{ + } }}{t}\),

$$\begin{aligned} E({\text{NPPM}}_{{S_{t} }} ) = & E\left[ {\frac{{S_{1}^{ + } + S_{2}^{ + } + \cdots + S_{t}^{ + } }}{t}} \right] \\ = & \frac{{E\left( {S_{1}^{ + } } \right) + E\left( {S_{2}^{ + } } \right) + \cdots + E\left( {S_{t}^{ + } } \right)}}{t}, \\ = & \frac{{np_{0} + np_{0} + \cdots + np_{0} }}{t}, \\ = & np_{0} \\ \end{aligned}$$
(B1)
$$\begin{aligned} {\text{var}} ({\text{NPPM}}_{{S_{t} }} ) = & {\text{var}} \left[ {\frac{{S_{1}^{ + } + S_{2}^{ + } + \cdots + S_{t}^{ + } }}{t}} \right] \\ = & \frac{{{\text{var}} \left( {S_{1}^{ + } } \right) + {\text{var}} \left( {S_{2}^{ + } } \right) + \cdots + {\text{var}} \left( {S_{t}^{ + } } \right)}}{{t^{2} }}, \\ = & \frac{{np_{0} \left( {1 - p_{0} } \right) + np_{0} \left( {1 - p_{0} } \right) + \cdots + np_{0} \left( {1 - p_{0} } \right)}}{{t^{2} }}, \\ = & \frac{{np_{0} \left( {1 - p_{0} } \right)}}{t} \\ \end{aligned}$$
(B2)

Appendix-C

Mean and variance of the proposed NPMEP sign chart is derived as follows:

$$NPMEP_{{S_{t} }} = \frac{1}{t}\mathop \sum \limits_{j = 1}^{t} E_{{S_{j}^{ + } }} .$$
$$E({\text{NPMEP}}_{{S_{t} }} ) = E\left[ {\frac{1}{t}\mathop \sum \limits_{j = 1}^{t} E_{{S_{j}^{ + } }} } \right],$$
$$E({\text{NPMEP}}_{{S_{t} }} ) = \frac{1}{t}\left[ {\mathop \sum \limits_{j = 1}^{t} E(E_{{S_{j}^{ + } }} )} \right],$$
$$E({\text{NPMEP}}_{{S_{t} }} ) = t\frac{{np_{0} }}{t},$$
$$E({\text{NPMEP}}_{{S_{t} }} ) = np_{0} .$$
(C1)

For variance of the NPMEP statistic.

\(E_{{S_{j}^{ + } }} = \omega \mathop \sum \nolimits_{i = 0}^{j - 1} \left( {1 - \omega } \right)^{i} S_{t - j}^{ + } + \left( {1 - \omega } \right)^{j} E_{0}\), where \(E_{0}\) is the initial value which is equal to the mean of the NPEWMA statistic.

The NPMEP statistic

$${\text{NPMEP}}_{{S_{t} }} = \frac{{\mathop \sum \nolimits_{j = 1}^{t} E_{{S_{j}^{ + } }} }}{t}$$
$${\text{NPMEP}}_{{S_{t} }} = \frac{{\mathop \sum \nolimits_{j = 1}^{t} \omega \mathop \sum \nolimits_{i = 0}^{j - 1} \left( {1 - \omega } \right)^{i} S_{j - i}^{ + } + \left( {1 - \omega } \right)^{j} E_{0} }}{t}$$
$${\text{NPMEP}}_{{S_{t} }} = \frac{\omega }{t}\mathop \sum \limits_{j = 1}^{t} \mathop \sum \limits_{i = 0}^{j - 1} \left( {1 - \omega } \right)^{i} S_{j - i}^{ + } + \frac{1}{t}\mathop \sum \limits_{j = 1}^{t} \left( {1 - \omega } \right)^{j} E_{0}$$

Consider

$$\mathop \sum \limits_{j = 1}^{t} \mathop \sum \limits_{i = 0}^{j - 1} \left( {1 - \omega } \right)^{i} S_{j - i}^{ + } ,$$
$$= \left[ {\mathop \sum \limits_{i = 0}^{1 - 1} \left( {1 - \omega } \right)^{i} S_{1 - i}^{ + } } \right] + \left[ {\mathop \sum \limits_{i = 0}^{2 - 1} \left( {1 - \omega } \right)^{i} S_{2 - i}^{ + } } \right] + \cdots + \left[ {\mathop \sum \limits_{i = 0}^{t - 1} \left( {1 - \omega } \right)^{i} S_{t - i}^{ + } } \right],$$

Open these summations and then we get

$$\mathop \sum \limits_{j = 1}^{t} \left( {\mathop \sum \limits_{i = 0}^{t - j} \left( {1 - \omega } \right)^{i} } \right)S_{j}^{ + }$$
$${\text{NPMEP}}_{{S_{t} }} = \frac{\omega }{t}\;\mathop \sum \limits_{j = 1}^{t} \left( {\mathop \sum \limits_{i = 0}^{t - j} \left( {1 - \omega } \right)^{i} } \right)S_{j}^{ + } + \frac{1}{t}\mathop \sum \limits_{j = 1}^{t} \left( {1 - \omega } \right)^{j} E_{0}$$

For variance

$${\text{var}} \left( {{\text{NPMEP}}_{{S_{t} }} } \right) = {\text{var}} \left( {\frac{\omega }{t} \mathop \sum \limits_{j = 1}^{t} \left( {\mathop \sum \limits_{i = 0}^{t - j} \left( {1 - \omega } \right)^{i} } \right)S_{j}^{ + } + \frac{1}{t}\mathop \sum \limits_{j = 1}^{t} \left( {1 - \omega } \right)^{j} E_{0} } \right),$$

\(= \frac{{\omega^{2} }}{{t^{2} }}\) \(\left( {\mathop \sum \limits_{j = 1}^{t} \left( {\mathop \sum \limits_{i = 0}^{t - j} \left( {1 - \omega } \right)^{i} } \right)} \right)^{2} \frac{n}{4} + 0;\) as \({\text{var}} \left( {\frac{1}{t}\mathop \sum \limits_{j = 1}^{t} \left( {1 - \omega } \right)^{j} E_{0} } \right) = 0,\)

$$= \frac{{\omega^{2} }}{{t^{2} }}\;\mathop \sum \limits_{j = 1}^{t} \frac{{\left( {1 - \left( {1 - \omega } \right)^{t - j + 1} } \right)}}{{\omega^{2} }}^{2} \left( \frac{n}{4} \right),$$
$$= \frac{n}{{4t^{2} }}\mathop \sum \limits_{j = 1}^{t} \left( {1 - \left( {1 - \omega } \right)^{t - j + 1} } \right)^{2}$$
(C2)

Using geometric progression to simplify the expression given in (C2)

$$= \frac{n}{{4t^{2} }}\;\mathop \sum \limits_{j = 1}^{t} [1 + \left( {1 - \omega } \right)^{{2\left( {t - j + 1} \right)}} - 2\left( {1 - \omega } \right)^{t - j + 1} ]$$
$$= \frac{n}{{4t^{2} }}\left[ {\mathop \sum \limits_{j = 1}^{t} 1 + \mathop \sum \limits_{j = 1}^{t} \left( {1 - \omega } \right)^{{2\left( {t - j + 1} \right)}} - 2\mathop \sum \limits_{j = 1}^{t} \left( {1 - \omega } \right)^{t - j + 1} } \right],$$

Appling sum of the geometric progressions

$$= \frac{n}{{4t^{2} }}\left[ {t + \left( {1 - \omega } \right)^{2} \left( {\frac{{1 - \left( {1 - \omega } \right)^{2t} }}{{1 - \left( {1 - \omega } \right)^{2} }}} \right) - 2\left( {1 - \omega } \right)\left( {\frac{{1 - \left( {1 - \omega } \right)^{t} }}{\omega }} \right)} \right],$$
$$= \frac{nt}{{4t^{2} }}\left[ {1 + \frac{{\left( {1 - \omega } \right)^{2} }}{t}\left( {\frac{{1 - \left( {1 - \omega } \right)^{2t} }}{{1 - \left( {1 - \omega } \right)^{2} }}} \right) - 2\frac{{\left( {1 - \omega } \right)}}{t}\left( {\frac{{1 - \left( {1 - \omega } \right)^{t} }}{\omega }} \right)} \right],$$
$${\text{var}} \left( {{\text{NPMEP}}_{{S_{t} }} } \right) = \frac{n}{4t}\left[ {1 + \frac{{\left( {1 - \omega } \right)^{2} }}{t}\left( {\frac{{1 - \left( {1 - \omega } \right)^{2t} }}{{1 - \left( {1 - \omega } \right)^{2} }}} \right) - 2\frac{{\left( {1 - \omega } \right)}}{t}\left( {\frac{{1 - \left( {1 - \omega } \right)^{t} }}{\omega }} \right)} \right].$$
(C3)

Appendix-D

Mean and variance of the proposed NPMEP arcsine chart.

\(E({\text{NPMEP}}_{{M_{t} }} ) = \mathop \sum \limits_{j = 1}^{t} \frac{{E\left( {E_{{M_{j} }} } \right)}}{t},\),

$$E({\text{NPMEP}}_{{M_{t} }} ) = t\frac{{\sin^{ - 1} \sqrt {P_{0} } }}{t},$$
$$E({\text{NPMEP}}_{{M_{t} }} ) = \sin^{ - 1} \sqrt {P_{0} } .$$
(D1)

For variance of \({\text{NPMEP}}_{{M_{t} }}\)

$${\text{NPMEP}}_{{M_{t} }} = \frac{{\mathop \sum \nolimits_{j = 1}^{t} \omega \mathop \sum \nolimits_{i = 0}^{j - 1} \left( {1 - \omega } \right)^{i} M_{j - i} + \left( {1 - \omega } \right)^{j} E_{0} }}{t}$$
$${\text{NPMEP}}_{{M_{t} }} = \frac{\omega }{t}\mathop \sum \limits_{j = 1}^{t} \mathop \sum \limits_{i = 0}^{j - 1} \left( {1 - \omega } \right)^{i} M_{j - i} + \frac{1}{t}\mathop \sum \limits_{j = 1}^{t} \left( {1 - \omega } \right)^{j} E_{0}$$

Consider

$$\mathop \sum \limits_{j = 1}^{t} \mathop \sum \limits_{i = 0}^{j - 1} \left( {1 - \omega } \right)^{i} M_{j - i} ,$$
$$= \left[ {\mathop \sum \limits_{i = 0}^{1 - 1} \left( {1 - \omega } \right)^{i} M_{1 - i} } \right] + \left[ {\mathop \sum \limits_{i = 0}^{2 - 1} \left( {1 - \omega } \right)^{i} M_{2 - i} } \right] + \ldots + \left[ {\mathop \sum \limits_{i = 0}^{t - 1} \left( {1 - \omega } \right)^{i} M_{t - i} } \right],$$

Open these summations and then we get

$$\mathop \sum \limits_{j = 1}^{t} \left( {\mathop \sum \limits_{i = 0}^{t - j} \left( {1 - \omega } \right)^{i} } \right)M_{j}$$
$${\text{NPMEP}}_{{S_{t} }} = \frac{\omega }{t}\;\mathop \sum \limits_{j = 1}^{t} \left( {\mathop \sum \limits_{i = 0}^{t - j} \left( {1 - \omega } \right)^{i} } \right)M_{j} + \frac{1}{t}\mathop \sum \limits_{j = 1}^{t} \left( {1 - \omega } \right)^{j} E_{0}$$

For variance

$${\text{var}} \left( {{\text{NPMEP}}_{{S_{t} }} } \right) = {\text{var}} \left( {\frac{\omega }{t} \mathop \sum \limits_{j = 1}^{t} \left( {\mathop \sum \limits_{i = 0}^{t - j} \left( {1 - \omega } \right)^{i} } \right)M_{j} + \frac{1}{t}\mathop \sum \limits_{j = 1}^{t} \left( {1 - \omega } \right)^{j} E_{0} } \right),$$

\(= \frac{{\omega^{2} }}{{t^{2} }}\) \(\left( {\mathop \sum \limits_{j = 1}^{t} \left( {\mathop \sum \limits_{i = 0}^{t - j} \left( {1 - \omega } \right)^{i} } \right)} \right)^{2} \frac{1}{4n} + 0\) as \({\text{var}} \left( {\frac{1}{t}\mathop \sum \limits_{j = 1}^{t} \left( {1 - \omega } \right)^{j} E_{0} } \right) = 0\)

$$= \frac{{\omega^{2} }}{{t^{2} }}\;\mathop \sum \limits_{j = 1}^{t} \frac{{\left( {1 - \left( {1 - \omega } \right)^{t - j + 1} } \right)}}{{\omega^{2} }}^{2} \left( \frac{1}{4n} \right)$$
$$= \frac{1}{{4nt^{2} }}\mathop \sum \limits_{j = 1}^{t} \left( {1 - \left( {1 - \omega } \right)^{t - j + 1} } \right)^{2}$$
$$= \frac{1}{{4nt^{2} }}\;\mathop \sum \limits_{j = 1}^{t} [1 + \left( {1 - \omega } \right)^{{2\left( {t - j + 1} \right)}} - 2\left( {1 - \omega } \right)^{t - j + 1} ]$$
$$= \frac{1}{{4nt^{2} }}\left[ {\mathop \sum \limits_{j = 1}^{t} 1 + \mathop \sum \limits_{j = 1}^{t} \left( {1 - \omega } \right)^{{2\left( {t - j + 1} \right)}} - 2\mathop \sum \limits_{j = 1}^{t} \left( {1 - \omega } \right)^{t - j + 1} } \right],$$

Appling sum of the geometric progressions

$$= \frac{1}{{4nt^{2} }}\left[ {t + \left( {1 - \omega } \right)^{2} \left( {\frac{{1 - \left( {1 - \omega } \right)^{2t} }}{{1 - \left( {1 - \omega } \right)^{2} }}} \right) - 2\left( {1 - \omega } \right)\left( {\frac{{1 - \left( {1 - \omega } \right)^{t} }}{\omega }} \right)} \right],$$
$$= \frac{t}{{4nt^{2} }}\left[ {1 + \frac{{\left( {1 - \omega } \right)^{2} }}{t}\left( {\frac{{1 - \left( {1 - \omega } \right)^{2t} }}{{1 - \left( {1 - \omega } \right)^{2} }}} \right) - 2\frac{{\left( {1 - \omega } \right)}}{t}\left( {\frac{{1 - \left( {1 - \omega } \right)^{t} }}{\omega }} \right)} \right],$$
$${\text{var}} \left( {{\text{NPMEP}}_{{S_{t} }} } \right) = \frac{1}{4nt}\left[ {1 + \frac{{\left( {1 - \omega } \right)^{2} }}{t}\left( {\frac{{1 - \left( {1 - \omega } \right)^{2t} }}{{1 - \left( {1 - \omega } \right)^{2} }}} \right) - 2\frac{{\left( {1 - \omega } \right)}}{t}\left( {\frac{{1 - \left( {1 - \omega } \right)^{t} }}{\omega }} \right)} \right].$$
(D2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Abbas, Z., Nazir, H.Z. et al. On Designing Mixed Nonparametric Control Chart for Monitoring the Manufacturing Processes. Arab J Sci Eng 46, 12117–12136 (2021). https://doi.org/10.1007/s13369-021-05801-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05801-6

Keywords

Navigation