Skip to main content
Log in

Impact of Inclined Lorentz Force and Schmidt Number on Chemically Reactive Newtonian Fluid Flow on a Stretchable Surface When Stefan Blowing and Thermal Radiation are Significant

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The influence of inclined magnetic field and heat and mass transfer of a hydromagnetic fluid on stretching/shrinking sheet with Stefan blowing effects and radiation has been investigated. The elementary viscous equations for momentum, heat and mass transfer, which are highly nonlinear partial differential equations, are mapped into highly nonlinear ordinary differential equations with the help of similarity transformation. The subsequent highly nonlinear differential equation is solved analytically. The exact solution of heat and mass transfer appearances is found in terms of the incomplete gamma function. The species and temperature boundary conditions are assumed to be a linear function of the distance from the origin. Further, the impact of various parameters, such as Chandrasekhar number, thermal radiation, inclined Lorentz force and mass transpiration on velocity and temperature summaries, are conferred in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

a :

Constant

\({B_{0}}\) :

Magnetic field (Wm2)

C :

Species concentration (mol m3)

C w :

Species concentration at the wall (mol m3)

\(C_{\infty} \) :

Ambient species concentration (mol m3)

f :

Similarity variable for velocity

k*:

Mean absorption coefficient (m2)

N R :

\( \left( { = \frac{16\sigma ^{*} T_{\infty }^{3} }{3k^{*} K}} \right) \) Radiation parameter

p :

Pressure of the fluid

Pr:

\( \left( { = \frac{\nu }{\alpha }} \right) \) Prandtl number

Q :

\( \left( { = \frac{{\sigma B_{0}^{2} }}{{a\rho }}} \right) \) Constant magnetic parameter

q r :

Radiative heat flux

q w :

Surface heat flux from the plate (Wm2)

Sc:

\( \left( { = \frac{\nu }{D}} \right) \) Schmidt number

T :

Fluid temperature (K)

\( T_{\infty } \) :

Surrounding fluid temperature (K)

T w :

Temperature of the surface (K)

u and v :

Velocity components in the x- and y-direction (ms−1)

U w :

Velocity of stretching sheet

v w :

Wall blowing velocity (ms−1)

x and y :

Coordinate systems (m)

′:

Differentiation with respect to \(\eta \)

α :

Thermal diffusivity of fluid (m2s1)

β :

Constant

\(\Lambda \) :

Stefan blowing parameter

\(\xi \) :

Variable

\(\zeta \) :

Variable

\(\eta \) :

Blasius similarity variable

\(\kappa \) :

Thermal conductivity of fluid (Wm1K1)

\(\theta \) :

Similarity variable for temperature

\(\lambda \) :

Stretching/shrinking parameter

λ > 0:

Stretching sheet

λ < 0:

Shrinking sheet

\(\nu \) :

Kinematic viscosity of fluid (m2s1)

\(\rho \) :

Density of fluid (Kgm3)

\(C_{P} \) :

Constant pressure specific thermal capacity of the fluid (JK1)

\( \sigma \) :

Electrical conductivity of fluid (Sm1)

\(\sigma ^{*} \) :

Stefan-Boltzmann constant

\(\tau \) :

Inclined parameter of magnetic field

\(\phi \) :

Similarity variable for concentration

\( \Gamma \) :

Incomplete gamma function

References

  1. Altan, T.; Oh, S.; Gegel, H.: Metal Forming Fundamentals and Applications. American Society of Metals, Metals Park (1979)

    Google Scholar 

  2. Fisher, E.G.: Extrusion of Plastics. Wiley, New York (1976)

    Google Scholar 

  3. Tadmor, Z.; Klein, I.: Engineering Principles of Plasticating Extrusion. Polymer Science and Engineering Series. Van Nostrand Reinhold, New York (1970)

    Google Scholar 

  4. Karwe, M.V.; Jaluria, Y.: Numerical simulation of thermal transport associated with a continuous moving flat sheet in materials processing. ASME J. HeatTransfer 113, 612–619 (1991)

    Article  Google Scholar 

  5. Sakiadis, B.C.: Boundary-layer behavior on continuous solid surface: I Boundary-layer equations for two-dimensional and axisymmetric flow. J. AIChe 7, 26–28 (1961)

    Article  Google Scholar 

  6. Crane, L.J.: Flow past a stretching plane. J. Appl. Math. Phys. (ZAMP) 21, 645–647 (1970)

    Article  Google Scholar 

  7. Fang, T.; Yao, S.; Pop, I.: Flow and heat transfer over a generalized stretching/shrinking wall problem—exact solutions of the Navier-Stokes equations. Int. J. Nonlinear Mech. 46(9), 1116–1127 (2011)

    Article  Google Scholar 

  8. Banks, W.H.H.: Similarity solutions of the boundary layer equations for a stretching wall. J. Mécan Theor. Appl. 2, 375–392 (1983)

    MathSciNet  MATH  Google Scholar 

  9. Magyari, E.; Keller, B.: Exact solutions for self-similar boundary-layer flows induced by permeable stretching surfaces. Eur. J. Mech. B Fluids 19, 109–122 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liao, S.J.; Pop, I.: Explicit analytic solution for similarity boundary layer equations. Int. J. Heat Mass Transfer 47, 75–85 (2004)

    Article  MATH  Google Scholar 

  11. Carragher, P.; Crane, L.J.: Heat transfer on a continuous stretching sheet. J. Appl. Math. Mech. (ZAMM) 62, 564–565 (1982)

    Article  Google Scholar 

  12. Grubka, J.L.; Bobba, K.M.: Heat transfer characteristics of a continuous stretching surface with variable temperature. ASME J. Heat Transfer 107, 248–250 (1985)

    Article  Google Scholar 

  13. Dutta, B.K.; Roy, P.; Gupta, A.S.: Temperature field in flow over a stretching sheet with uniform heat flux. Int. Commun. Heat Mass Transfer 12, 89–94 (1985)

    Article  Google Scholar 

  14. Gupta, P.S.; Gupta, A.S.: Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 55, 744–746 (1977)

    Article  Google Scholar 

  15. Bataller, R.C.: Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinearly stretching surface. J. Mater. Process. Tech. 203, 176–183 (2008)

    Article  Google Scholar 

  16. Afzal, N.: Momentum transfer on power law stretching plate with free stream pressure gradient. Int. J. Eng. Sci. 41, 1197–1207 (2003)

    Article  Google Scholar 

  17. Weidman, P.D.; Kubitschek, D.G.; Davis, A.M.J.: The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci. 44, 730–737 (2006)

    Article  MATH  Google Scholar 

  18. Ishak, A.; Nazar, R.; Pop, I.: Flow and heat transfer characteristics on a moving flat plate in a parallel stream with constant surface heat flux. Heat Mass Transfer 45, 563–567 (2009)

    Article  Google Scholar 

  19. Bataller, R.C.: Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition. Appl. Math. Comput. 206, 832–840 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Turkyilmazoglu, M.: Heat and mass transfer of MHD second order slip flow. Comput. Fluids 70, 426–434 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Andersson, H.I.; Hansen Olav, R.; Holmedal, B.: Diffusion of a chemically reactive species from a stretching sheet. Int. J. Heat Mass Transfer 37(4), 659–664 (1994)

    Article  MATH  Google Scholar 

  22. Takhara, H.S.; Chamkha, A.J.; Nath, G.: Flow and mass transfer on a stretching sheet with a magnetic field and chemically reactive species. Int. J. Eng. Sci. 38(12), 1303–1314 (2000)

    Article  MATH  Google Scholar 

  23. Akyildiz, F.T.; Bellout, H.; Vajravelu, K.: Diffusion of chemically reactive species in a porous medium over a stretching sheet. J. Math. Anal. Appl. 320(1), 322–339 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ziabakhsh, Z.; Domairry, G.; Bararnia, H.; Babazadeh, H.: Analytical solution of flow and diffusion of chemically reactive species over a nonlinearly stretching sheet immersed in a porous medium. J. Taiwan Inst. Chem. Eng. 41(1), 22–28 (2010)

    Article  Google Scholar 

  25. Pal, D.; Mondal, H.: Effects of Soret Dufour, chemical reaction and thermal radiation on MHD non-Darcy unsteady mixed convective heat and mass transfer over a stretching sheet. Commun. Nonlinear Sci. Numer. Simul. 16(4), 1942–1958 (2011)

    Article  Google Scholar 

  26. Khan, W.A.; Pop, I.M.: Effects of homogeneous-heterogeneous reactions on the viscoelastic fluid toward a stretching sheet. J. Heat Transfer 134(6), 064506 (2012)

    Article  Google Scholar 

  27. Bhattacharyya, K.; Mukhopadhyay, S.; Layek, G.C.: Unsteady MHD boundary layer flow with diffusion and first order chemical reaction over a permeable stretching sheet with suction or blowing. Chem. Eng. Commun. 200, 379–397 (2013)

    Article  Google Scholar 

  28. Nellis, G; Klein, S.: Heat Transfer. Cambridge University Press; 2008 [chapter 9, p. E23–5].

  29. Lienhard, IV J.H.; Lienhard, V J.H.: A Heat Transfer Textbook, 3rd ed. Cambridge, MA: Phlogiston Press; 2005 [p. 662–3].

  30. Acrivos, A.: The asymptotic form of the laminar boundary-layer mass-transfer rate for large interfacial velocities. J Fluid Mech. 12(3), 337–357 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  31. Spalding, D.B.: Mass transfer in laminar flow. Proc. R. Soc. Lond. A 221, 78–99 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  32. Siddheshwar, P.G.; Mahabaleshwar, U.S.: Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. Int. J. Non-Linear Mech. 40(6), 807–820 (2005)

    Article  MATH  Google Scholar 

  33. Mahabaleshwar, U.S.; Nagaraju, K.R.; Vinay Kumar, P.N.; Kelson, N.A.: An MHD Navier’s slip flow over axisymmetric linear stretching sheet using differential transform method. Int. J. Appl. Comput. Math. 4(1), 30 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mahabaleshwar, U.S.; Vinay Kumar, P.N.; Sheremet, M.: Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction. Springerplus 5(1), 1901 (2016)

    Article  Google Scholar 

  35. Mahabaleshwar, U.S.; Nagaraju, K.R.; Sheremet, M.A.B.; D & Lorenzini, E, : Mass transpiration on Newtonian flow over a porous stretching/shrinking sheet with slip. Chin. J. Phys. 63, 130–137 (2020)

    Article  MathSciNet  Google Scholar 

  36. Mahabaleshwar, U.S.; VinayKumar, P.N.; Nagaraju, K.R.; Gabriella, B.; Nayakar, R.S.N.: A new exact solution for the flow of a fluid through porous media for a variety of boundary conditions. Fluids 4(3), 125 (2019)

    Article  Google Scholar 

  37. Yadav, D.; Mahabaleshwar, U.S.; Wakif, A.; Chand, R.: Significance of the inconstant viscosity and internal heat generation on the occurrence of Darcy-Brinkman convective motion in a couple-stress fluid saturated porous medium: an exact analytical solution. Int. Commun. Heat Mass Transfer 122, 105165 (2021)

    Article  Google Scholar 

  38. Xenos, M.A.; Petropoulou, E.N.; Siokis, A.; Mahabaleshwar, U.S.: Solving the nonlinear boundary layer flow equations with pressure gradient and radiation. Symmetry 12(5), 710 (2020)

    Article  Google Scholar 

  39. Mahabaleshwar, U.S.; Nagaraju, K.R.; Vinay Kumar, P.N.; NdiAzese, M.: Effect of radiation on thermosolutal Marangoni convection in a porous medium with chemical reaction and heat source/sink. Phys. Fluids 32(11), 113602 (2020)

    Article  Google Scholar 

  40. Shah, N.A.; Khan, I.: Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo-Fabrizio derivatives. Eur. Phys. J. C 76, 362 (2016)

    Article  Google Scholar 

  41. Ali, F.; Saqib, M.; Khan, I.; Sheikh, N.A.: Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walters’-B fluid model. Eur. Phys. J. Plus 131, 377 (2016)

    Article  Google Scholar 

  42. Sheikh, N.A.; Ali, F.; Saqib, M.; Khan, I.; Jan, S.A.A.; Alshomrani, A.S.; Alghamdi, M.S.: Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction. Results Phys. 7, 789–800 (2017)

    Article  Google Scholar 

  43. Khalid, A.; Khan, I.; Khan, A.; Shafie, S.: Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium. Eng. Sci. Technol. Int. J. 18(3), 309–317 (2015)

    MATH  Google Scholar 

  44. Sowmya, G.; Gireesha, B.J.; Animasaun, I.L.: Nehad Ali Shah, Significance of buoyancy and Lorentz forces on water-conveying iron(III) oxide and silver nanoparticles in a rectangular cavity mounted with two heated fins: heat transfer analysis. J. Therm. Anal. Calorim. 144, 2369–2384 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

Anusha T. is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, for financial support in the form of Junior Research Fellowship: File No. 09/1207(0003)/2020-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvanjan Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahabaleshwar, U.S., Anusha, T., Sakanaka, P.H. et al. Impact of Inclined Lorentz Force and Schmidt Number on Chemically Reactive Newtonian Fluid Flow on a Stretchable Surface When Stefan Blowing and Thermal Radiation are Significant. Arab J Sci Eng 46, 12427–12443 (2021). https://doi.org/10.1007/s13369-021-05976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05976-y

Keywords

Navigation