Skip to main content
Log in

Behavior of Splicing GFRP-Concrete-Steel Double-Skin Tubular Columns Subject to Eccentric Compression

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper designs the splicing GFRP-concrete-steel double-skin tubular column (DSTC) specimens based on steel bar connection, and the mechanical performance under eccentric compression load is investigated. The test parameters include the axial connection steel ratio, the load eccentricity and the hollow ratio. The results show that the splicing DSTCs present ductile failure under eccentric load, with the average deflection ductility coefficient of 4.21 and the axial shortening of more than 2% of the column height. The arranged connection steel cage prevents the joint failure, and the columns fail at the non-joint section, characterized by hoop rupture of the GFRP tube and concrete crushing at the same position. The proposed splice method satisfies the strength requirements, with more than 20% increase in the ultimate load compared with the continuous specimen, while the bearing capacity dose not increase with the increase of the axial connection steel ratio. Thus, it is suggested that the low axial steel ratio of 2.44% is used for the splicing DSTCs under relative small eccentricity (20 mm). The ultimate load decreases by about 25% with every 20 mm increase in load eccentricity, and the 40 mm eccentricity causes almost 50% reduction in the initial stiffness and doubles the lateral deflection compared with the axial compression member. The increase of hollow ratio decreases the ultimate load, the initial axial stiffness and also the ductility of the column. The theoretical calculation method for predicting the bearing capacity of the splicing DSTCs is experimentally verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Teng, J.G.; Yu, T.; Wong, Y.L.: Hybrid FRP-concrete–steel tubular columns: concept and behavior. Constr. Build. Mater. 21(4), 846–854 (2007)

    Article  Google Scholar 

  2. Qian, J.; Liu, M.: Experimental investigation of FRP-concrete-steel double-skin tubular stubs under axial compressive loading. J. Build. Struct. 29(2), 104–113 (2008)

    Google Scholar 

  3. Teng, J.G., Yu, T., Wong, Y.L. Hybrid FRP-concrete-steel double-skin tubular structural members. Adv. FRP Compos. Civil Eng., 2011: 26–32.

  4. Jin, X.; Zhong, W.: Progress in the research on FRP-concrete-steel double-skin tubular members. Ind. Const. 45(8), 139–144 (2015)

    Google Scholar 

  5. Chen, B.; Wang, L.: Experimental study on hollow steel-reinforced concrete-filled GFRP tubular members under axial compression. Steel Compos. Struct. 32(1), 59–66 (2019)

    MathSciNet  Google Scholar 

  6. Fanggi, B.A.L.; Ozbakkaloglu, T.: Compressive behavior of aramid FRP-HSC-steel double-skin tubular columns. Constr. Build. Mater. 48, 554–565 (2013)

    Article  Google Scholar 

  7. Zhang, B.; Teng, J.G.; Yu, T.: Experimental behavior of hybrid FRP-concrete-steel double-skin tubular columns under combined axial compression and cyclic lateral loading. Eng. Struct. 99, 214–231 (2015)

    Article  Google Scholar 

  8. Zeng, L.; Li, L.; Su, Z.; Liu, F.: Compressive test of GFRP-recycled aggregate concrete-steel tubular long columns. Constr. Build. Mater. 176, 295–312 (2018)

    Article  Google Scholar 

  9. Li, L.; Fang, S.; Fu, B.; Chen, H.; Geng, M.: Behavior of hybrid FRP-concrete-steel multitube hollow columns under axial compression. Const. Build. Mater. 253, 119159 (2020)

    Article  Google Scholar 

  10. Xu, P.; Yao, J.; Lu, Z.: Experimental study of FRP-concrete steel double-skin tubular long columns subject to eccentric compression. Ind. Const. 44(1), 134–137 (2014)

    Google Scholar 

  11. Wang, Y.; Wang, D.; Lei, Q.; Li, C.: Behavior of square FRP-concrete-steel tube combined columns under eccentric compression. J. Hebei Univ. Technol. 44(4), 106–109 (2015)

    Google Scholar 

  12. Mei, B.; Zhang, Y.; Wu, Z.: Numerical simulation of GFRP- concrete- steel double skin tubular columns under eccentric compression with different void ratio. J. Shihezi Univ. (Natl. Sci.) 36(2), 214–219 (2018)

    Google Scholar 

  13. Yu, T.; Wong, Y.L.; Teng, J.G.: Behavior of hybrid FRP-concrete-steel double-skin tubular columns subjected to eccentric compression. Adv. Struct. Eng. 13(5), 961–974 (2010)

    Article  Google Scholar 

  14. Yao, J.; Jiang, T.; Xu, P.; Lu, Z.G.: Experimental investigation on large-scale slender frp-concrete-steel double-skin tubular columns subjected to eccentric compression. Adv. Struct. Eng. 18(10), 1737–1746 (2015)

    Article  Google Scholar 

  15. Xu, J.; Yao, J.; Xu, P.; Lu, Z.: Bearing capacity of Hybrid GFRP-concrete-steel double-skin tubular columns under eccentric compression. J. Zhejiang Shuren Univ. 16(1), 27–34 (2016)

    Google Scholar 

  16. Mirmiran, A.; Shao, Y.; Shahawy, M.: Analysis and field tests on the performance of composite tubes under pile driving impact. Compos. Struct. 55(2), 127–135 (2002)

    Article  Google Scholar 

  17. Helmi, K., Fam, A., Mufti, A.: Field installation, splicing, and flexural testing of hybrid FRP/concrete piles. ACI Special Publication, 2005; SP-230–62: 1103–1120.

  18. Zhu, Z.; Ahmad, I.; Mirmiran, A.: Splicing of precast concrete-filled FRP tubes. J. Compos. Const. 10(4), 345–356 (2006)

    Article  Google Scholar 

  19. Chen, B.; Wang, L.: Experimental study on flexural behavior of splicing concrete-filled GFRP tubular composite members connected with steel bars. Steel Compos. Struct. 18(5), 1129–1144 (2015)

    Article  Google Scholar 

  20. Chen, B.; Wang, L.: Experimental research on the performance of splicing concrete-filled GFRP tube composite members connected with steel bars subjected to axial loading. Eng. Mech. 29(12), 355–359 (2012)

    Google Scholar 

  21. Zhang, N.; Wang, L.; Han, H.: GFRP tube splicing method of GFRP concrete column. J. Harbin Inst. Technol. 47(10), 64–69 (2015)

    Google Scholar 

  22. Zhang, N.; Wang, L.; Chen, B.: Axial compression performance of splicing concrete-filled GFRP tubular composite component. J. Northeastern Univ. (Natl. Sci.) 37(1), 118–122 (2016)

    Google Scholar 

  23. Qiu, C.; Ding, C.; He, X.; Zhang, L.; Bai, Y.: Axial performance of steel splice connection for tubular FRP column members. Compos. Struct. 189, 498–509 (2018)

    Article  Google Scholar 

  24. American Society for Testing and Materials (ASTM), Standard test method for tensile properties of polymer matrix composite materials, ASTM D3039/D3039M-14, Philadelphia, 2014.

  25. American Society for Testing and Materials (ASTM), Test methods and definitions for mechanical testing of steel products, ASTM A37014, Philadelphia, 2014.

  26. Ministry of Construction of the PRC, Standard for test method of mechanical properties on ordinary concrete, GB/T 50080, Beijing, 2016.

  27. Wong, Y.L.; Yu, T.; Ten, J.G.; Dong, S.L.: Behavior of FRP-confined concrete in annular section columns. Compos. B Eng. 39(3), 451–466 (2008)

    Article  Google Scholar 

  28. Wang, L.; Han, H.; Liu, P.: Behavior of reinforced concrete-filled GFRP tubes under eccentric compression loading. Mater. Struct. 49, 2819–2827 (2016)

    Article  Google Scholar 

  29. Wang, L.; Zhou, L.: Experimental research on GFRP columns filled with steel-reinforced high-strength concrete subjected to eccentric compression load. Eng. Mech. 28(1), 145–149 (2011)

    Google Scholar 

  30. Le, T.T.; Asteris, P.G.; Lemonis, M.E.: Axial load capacity of rectangular concrete-filled steel tube columns using machnine learning techniques. Eng. Comput. (2020). https://doi.org/10.1007/s00366-021-01461-0

    Article  Google Scholar 

  31. Asteris, P.G.; Lemonis, M.E.; Nguyen, T.A.; Le, H.V.; Pham, B.T.: Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes. Steel Compos. Struct. 39(4), 471–491 (2021)

    Google Scholar 

  32. Ly, H.B.; Pham, B.T.; Le, L.M.; Le, T.T.; Le, V.M.; Asteris, P.G.: Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models. Neural Comput. Appl. 33(8), 3437–3458 (2021)

    Article  Google Scholar 

  33. Sarir, P.; Chen, J.; Asteris, P.G.; Armaghani, D.J.; Tahir, M.M.: Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns. Eng. Comput. 37, 1–19 (2021)

    Article  Google Scholar 

  34. Mander, J.; Priestley, M.: Theoretical stress-strain model for confined concrete. J. Struct. Eng. 114(8), 1804–1826 (1988)

    Article  Google Scholar 

  35. Ministry of Construction of the PRC, Technical code for infrastructure application of FRP composites, GB50608–2010, Beijing (2011)

Download references

Acknowledgements

The experiments were conducted at 211 Test and Research Center of Northeastern University. The authors wish to gratefully thank for the support of these organizations for this study.

Funding

This work was supported by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China [Grant Number 51808100]; the Guidance Plan of Natural Fund of Liaoning Province [Grant Number 2019-ZD_0004]; and the Natural Science Foundation of Liaoning Province [Grant Number 20170540303].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-guang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, Lg., Gao, Hy. et al. Behavior of Splicing GFRP-Concrete-Steel Double-Skin Tubular Columns Subject to Eccentric Compression. Arab J Sci Eng 47, 4955–4969 (2022). https://doi.org/10.1007/s13369-021-06335-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06335-7

Keywords

Navigation