Skip to main content
Log in

Fabrication, structural characterization, dielectric and electrical parameters of the synthesized nano-crystalline erbium oxide

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Nano crystalline erbium oxide (Er2O3) was synthesized in the laboratory through sol-gel method. The effect of different annealing temperatures on the crystal structure has been studied using x-ray diffraction (XRD). The comparison of the specific surface area (s); calculated using Brunauer, Emmett & Teller theory and (XRD) results, was made and found in agreement with an approximate error of 7%. The morphology of the samples has been studied using scanning electron microscope (SEM) and particles are found having a spherical morphology. Elemental analysis of the erbium oxide was also carried using energy dispersive spectrum (EDS) of the synthesized samples. Fourier transform infrared spectrum (FTIR) of the prepared samples showed the characteristic peaks for Er2O3. The dielectric properties of Er2O3 were also studied in the wide range of frequency (100 Hz - 5MHz). The activation energy for erbium oxide was found to be between 0.5–0.8 eV in the temperature range of 373 K–573 K. Hall effect measurements were done on the synthesized erbium oxide and it was found that erbium oxide can have useful applications in the Hall effect sensors (HES).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mohammadi, J. Badraghi, A. B. Moghaddam, Y. Ganjkhanlou, M. Kazemzad, S. Hosseini, and R. Dinarvand, Chem. Eng. Technol. 34, 56 (2011).

    Article  Google Scholar 

  2. W. Cai, T. Gao, H. Hong, and J. Sun, Nanotechnology, Sci. and App. 1, 17 (2008)

    Google Scholar 

  3. Ratyakshi, R. P. Chauhan, Asian J. Chem. 21, 113 (2009)

    Google Scholar 

  4. H. A. I. Y. Tok, L. T. Su, F. Y. C. Boey, and S. H. Ng, J. Electroceramics 17, 75 (2006).

    Article  Google Scholar 

  5. S. Sato, R. Takahashi, M. Kobune, and H. Gotoh, Applied Catalysis A: General 356, 57 (2009).

    Article  Google Scholar 

  6. Y. Zhao, Materials 5, 1413 (2012).

    Article  Google Scholar 

  7. L. Wilkinson, M. Maqbool, and I. Ahmad, BAPS Bulletin of American Physical Society, p. 8, College Park, MD, USA (2010).

    Google Scholar 

  8. M. Fanciulli and G. Scarel, Rare Earth Oxide Thin Films Growth, Characterization, and Applications, p. 331, Springer, Newyork (2007).

    Google Scholar 

  9. Y. Takai, T. Maeda, and T. Tsukatani, Thermal Spray Rare Earth Oxide Particles, Sprayed Components, and Corrosion Resistant Components, http://www. Y. Takai, T. Maeda, T. Tsukatani — US Patent 6,767,636, 2004 - Google Patents (2004).

  10. M. P. A. Neuman, R. Roemero, K. J. McClellen, and J. J. Petrovic, Fabrication and Properties of Erbium Oxide, p. 33, John Wiley and Sons. Inc., Newyork (2008).

    Google Scholar 

  11. L. Xinlian, W. Ping, Q. Hong, C. Sen, and S. Binbin, Thin Solid Films 520, 2316 (2012).

    Article  Google Scholar 

  12. A. Kelly and N. H. Macmillan, Monographs on the Physics and Chemistry of Materials, Strong Solids, p. 180, Clarendon Press, New York, NY (1986).

    Google Scholar 

  13. K. M. Hubbard and B. F. Espinozo, Thin Solid Films 366, 175 (2000).

    Article  Google Scholar 

  14. B. A. Pint, P. F. Tortorelli, A. Jankowskim J. Hayes, T. Muroga, A. Suzuki, O. I. Yeliseyeva, and V. M. Chernov, J. Nucl. Mater. 119, 329 (2004).

    Google Scholar 

  15. A. Sawada, A. Suzuki, H. Maier, F. Koch, T. Terai, and T. Muroga, Fusion Eng. Des. 737, 75 (2005).

    Google Scholar 

  16. F. Koch, R. Brill, H. Maier, D. Levchuk, A. Suzuki, T. Muroga, and H. Bolt, J. Nucl. Mater. 1403, 329 (2004).

    Google Scholar 

  17. D. Levchuk, S. Levchuk, H. Maier, H. Bolt, and A. Suzuki, J. Nucl. Mater. 1033, 367 (2007).

    Google Scholar 

  18. C. Zhao, C. Z. Zhao, M. Werner, S. Taylor, and P. R. Chalker, ISRNNtech 2012, 1 (2012).

    Google Scholar 

  19. C. H. Kao, H. Pan, Y. T. Chiu, J. S. Lu, and T. Chang, Solid State Communications 152, 504 (2012).

    Article  Google Scholar 

  20. A. Bakhsh and A. Maqsood, Electron. Mater. Lett. 8, 605 (2012).

    Article  Google Scholar 

  21. X. Chen, C. Wang, X. R. Hu, K. Stahl, and J. Jiang, Nanotechnology 22, 295708 (2011).

    Article  Google Scholar 

  22. J. Jankowski, S. E. Ahmar, and M. Oszwaldowski, Sensors 11, 876 (2011).

    Article  Google Scholar 

  23. M. Lequitte and D. Autissier, NanoStructured Materials 6, 333 (1955).

    Article  Google Scholar 

  24. W. M. Keely, Anal. Chem. 38, 147 (1996).

    Article  Google Scholar 

  25. X. Dong and G. Hong, J. Mater. Sci. Technol. 21, 555 (2005).

    Google Scholar 

  26. E. H. Hall, Am. J. Mathematics 2, 287 (1879).

    Article  Google Scholar 

  27. C. Kittel, Introduction to Solid State Physics, p. 155, John Wiley and Sons Inc., Newyork (1976).

    Google Scholar 

  28. R. Hosseini and A. Kashaninia, World Academy of Science, Engineering and Technology 15, 431 (2008).

    Google Scholar 

  29. K. Singh, V. K. Singh, and B. C. Yadav, Int. J. Chem. and Anal. Sci. 2, 136 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahad Azad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azad, F., Maqsood, A. Fabrication, structural characterization, dielectric and electrical parameters of the synthesized nano-crystalline erbium oxide. Electron. Mater. Lett. 10, 557–563 (2014). https://doi.org/10.1007/s13391-013-3195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3195-y

Keywords

Navigation