Skip to main content
Log in

Surface-treated biocompatible ZnS quantum dots: Synthesis, photo-physical and microstructural properties

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In the present study, the ZnS semiconductor quantum dots were successfully synthesized via an aqueous method utilizing glutathione (GSH), thioglycolic acid (TGA) and polyvinyl pyrrolidone (PVP) as capping agents. The structural, morphological and photo-physical properties and biocompatibility were investigated using comprehensive characterization techniques such as x-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), dynamic light scattering (DLS), Fourier transform infrared spectrometry (FT-IR), UV-Vis optical absorption, photoluminescence (PL) spectrometer and MTT assay. The XRD patterns showed a cubic zinc blende crystal structure and a crystallite size of about 2–3 nm using Scherrer’s equation confirmed by the electron micrographs and Effective Mass Approximation (EMA). The DLS and zeta-potential results revealed that GSH capped ZnS nanoparticles have the narrowest size distribution with an average size of 27 nm and relatively good colloidal stability. Also, the FT-IR spectrum confirmed the interaction of the capping agent groups with ZnS nanoparticles. According to the UV-Vis absorption results, optical bandgap of the spherical capped nanoparticles is higher compared to the uncapped sample and could be wider than 3.67 eV (corresponding to the bulk ZnS), which is due to the quantum confinement effect. From photoluminescence spectra, it was found that the emission becomes more intensive and shifts towards the shorter wavelengths in the presence of the capping agent. Moreover, the emission mechanism of uncapped and capped ZnS was discussed in detail. Finally, the MTT results revealed the satisfactory (>94%) biocompatibility of GSH capped ZnS quantum dots which would be a promising candidate applicable in fluorescent biological labels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Niemeyer, Angew. Chem. Int. Ed. Engl. 40, 4128 (2001).

    Article  Google Scholar 

  2. D. R. Jung, J. Kim, C. Nahm, H. Choi, S. Nam, and B. Park, Electron. Mater. Lett. 8, 275 (2012).

    Article  Google Scholar 

  3. J. Liu, Z. Shi, Y. Yu, R. Yang, and S. Zue, J. Colloid Interface Sci. 342, 278 (2010).

    Article  Google Scholar 

  4. A. M. Smith, H. Duan, A. M. Mohs, and S. Nie, Adv. Drug Deliver Rev. 60, 1226 (2008).

    Article  Google Scholar 

  5. A. Kitai, Luminescent Material and Applications, p. 19, John Wiley & Sons Ltd, Southern Gate (2008).

    Book  Google Scholar 

  6. M. Green and P. O. Brien, Chem. Commun. 2235 (1999).

  7. B. S. Zou, R. B. Little, J. P. Wang, and M. A. Sayed, Int. Quant. Chem. 72, 439 (1999).

    Article  Google Scholar 

  8. M. Kundu, A. A. Khosravi, and S. K. Kulkarni, J. Mat. Sci. 32, 245 (1997).

    Article  Google Scholar 

  9. B. Saraswathi Amma, J. Mater. Sci. Mater. Electron. 18, 1109 (2007).

    Article  Google Scholar 

  10. A. Henglein, Chem. Rev. 89, 1861 (1989).

    Article  Google Scholar 

  11. D. W. Hall and N. F. Borrelli, J. Opt. Soc. Am. B 5, 1650 (1988).

    Article  Google Scholar 

  12. S. K. Mishra, R. K. Srivastava, S. G. Prakash, R. S. Yadav, and A. C. Panday, Electron. Mater. Lett. 7, 31 (2011).

    Article  Google Scholar 

  13. R. C. Somers and M. G. Bawendi, Chem. Soc. Rev. 36, 579 (2007).

    Article  Google Scholar 

  14. H. Sameie, R. Salimi, A. A. Sabbagh Alvani, A. A. Sarabi, F. Moztarzadeh, M. A. Mokhtari Farsi, H. eivaz mohammadloo, M. Sabbagh alvani, and M. Tahriri, J. Inorg. Organomet. Polym. 22, 737 (2012).

    Article  Google Scholar 

  15. R. Salimi, H. Sameie, A. A. Sabbagh Alvani, A. A. Sarabi, F. Moztarzadeh, H. Eivaz Mohammadloo, F. Nargesian, and M. Tahriri, J. Mater. Sci. 47, 2658 (2012).

    Article  Google Scholar 

  16. R. Salimi, H. Sameie, A. A. Sabbagh Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, Luminescence 29, 449 (2011).

    Article  Google Scholar 

  17. H. Sameie, R. Salimi, A. A. Sabbagh Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, Physica B 405, 4796 (2010).

    Article  Google Scholar 

  18. M. Geszke-Moritz, H. Piotrowska, M. Murias, L. Balan, M. Moritz, J. Lulek, and R. Schneider, J. Mater. Chem. B 1, 698 (2013).

    Article  Google Scholar 

  19. K. Manzoor, S. Johny, D. Thomas, S. Setua, D. Menon, and S. Nair, Nanotech. 20, 065102 (2009).

    Article  Google Scholar 

  20. M. Geszke, M. Muris, L. Balan, G. Medjahdi, J. Korczynski, M. Moritz, J. Lulek, and R. Schneider, Acta Biomater. 7, 1327 (2011).

    Article  Google Scholar 

  21. X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, Nat. Biotechnol. 22, 969 (2004).

    Article  Google Scholar 

  22. Z. Liu, W. B. Cai, L. N. He, N. Nakayama, K. Chen, X. Sun, X. Chen, and H. Dai, Nat. Nanotech. 2, 47 (2007).

    Article  Google Scholar 

  23. N. Gaponik, D. V. Talapin, A. L. Gogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, Phys. Chem. B 106, 7177 (2002).

    Article  Google Scholar 

  24. H. Qian, C. Dong, J. Weng, and J. Ren, Small 2, 747 (2006).

    Article  Google Scholar 

  25. Z. Deng, F. L. Lie, S. Shen, I. Ghosh, M. Mansuripur, and A. J. Muscat, Langmuir 25, 434 (2009).

    Article  Google Scholar 

  26. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, Nat. Biotechnol. 21, 41 (2003).

    Article  Google Scholar 

  27. M. Zhou, E. Nakatani, L. S. Gronenberg, T. Tokimoto, M. J. Wirth, V. J. Hruby, A. Roberts, R. M. Lynch, and I. Ghosh, Bioconjugate Chem. 18, 323 (2007).

    Article  Google Scholar 

  28. N. Tomczak, D. Jánczewski, M. Han, and G. J. Vancso, Prog. Polym. Sci. 34, 393 (2009).

    Article  Google Scholar 

  29. Y. Li and J. S. Yu, J. Colloid Interface Sci. 351, 1 (2010).

    Article  Google Scholar 

  30. M. Singhal, J. K. Sharma, and S. Kumar, J. Mater Sci: Mater Electron. 23, 1387 (2012).

    Google Scholar 

  31. N. Chen, Y. He, Y. Su, X. Li, Q. Huang, H. Wang, X. Zhang, R. Tai, and C. Fan, Biomater. 33, 1238 (2012).

    Article  Google Scholar 

  32. S. Sahai, M. Husain, V. Shanker, N. Singh, and D. Haranath, J. Colloid Interface Sci. 357, 379 (2011).

    Article  Google Scholar 

  33. S. S. Liji Sobhana, M. Vimala Devi, T. P. Sastry, and A. B. Mandal, Nanopart. Res. 13, 1747 (2011).

    Article  Google Scholar 

  34. C. Torres-Martínez, L. Nguyen, R. Kho, W. Bae, K. Bozhilov, V. Klimov, and R. K. Mehra, Nanotech. 10, 1 (1999).

    Article  Google Scholar 

  35. E. Mohagheghpour, F. Moztarzadeh, M. Rabiee, M. Tahriri, M. Ashuri, H. Sameie, R. Salimi, and S. Moghadas, IEEE Trans. Nanobiosci. 11, 317 (2012).

    Article  Google Scholar 

  36. M. Sharma, S. Kumar, and O. P. Pandey, Nanopart. Res. 12, 2655 (2010).

    Article  Google Scholar 

  37. M. Mobarraz, M. R. Ganjali, M. J. Chaichi, and P. Norouzi, Spectrochim. Acta Part A 96, 801 (2012).

    Article  Google Scholar 

  38. D. L. Ferreira and J. L. A. Alves, Nanotech. 15, 975 (2004).

    Article  Google Scholar 

  39. R. Salimi, H. Sameie, A. A. Sabbagh Alvani, A. A. Sarabi, H. Eivaz Mohammadloo, F. Nargesian, and M. Tahriri, J. Opt. Soc. Am. B 30, 1747 (2013).

    Article  Google Scholar 

  40. N. Soltani, E. Saion, M. Erfani, K. Rezaee, G. Bahmanrokh, G. P. C. Drummen, Afarin Bahrami, and M. Z. Hussein, Int. J. Mol. Sci. 13, 12412 (2012).

    Article  Google Scholar 

  41. N. S. Nirmala Jothi and P. Sagayaraj, Appl. Sci. Res. 4, 1079 (2012).

    Google Scholar 

  42. A. A. Ahmadi, State-of-the-Art of Quantum Dot System Fabrications, p. 119, Chapter 1 and 8, InTech, Croatia (2012).

    Book  Google Scholar 

  43. K. Manzoor, S. R. Vadera, N. Kumar, and T. R. N. Kutty, Solid State Commun. 129, 469 (2004).

    Article  Google Scholar 

  44. S. J. Rosenthal, J. C. Chang, O. Kovtun, J. R. McBride, and I. D. Tomlinson, Chem. Biol. 18, 28 (2011).

    Article  Google Scholar 

  45. S. K. Mehta, S. Kumar, and M. Gradzielski, J. Colloid Interface Sci. 360, 497 (2011).

    Article  Google Scholar 

  46. D. Denzler, M. Olschewski, and K. Sattler, Appl. Phys. 5, 84 (1998).

    Google Scholar 

  47. M. Kanemoto, H. Hosokawa, Y. Wada, K. Murakoshi, S. Yanagida, T. Sakata, H. Mori, M. Ishikawa, and H. Kobayashi, Chem. Soc. Faraday Trans. 92, 2401 (1996).

    Article  Google Scholar 

  48. H. Tang, G. Xu, L. Weng, L. Pan, and L. Wang, Acta Mater. 52, 1489 (2004).

    Article  Google Scholar 

  49. X. Wang, J. Shi, Z. Feng, M. Li, and C. Li, Phys. Chem. Chem. Phys. 13, 4715 (2011).

    Article  Google Scholar 

  50. J. Tauc and A. Menth, J. Non-Cryst. Solids 8–10, 569 (1972).

    Article  Google Scholar 

  51. R. Sakthi Sudar Saravanan, D. Pukazhselvan, and C. K. Mahadevan, J. Alloy Compd. 517, 139 (2012).

    Article  Google Scholar 

  52. E. O. Chukwuocha and M. C. Onyeaju, Int. J. Sci. Technol. Research. 1, 21 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sabbagh Alvani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taherian, M., Sabbagh Alvani, A.A., Shokrgozar, M.A. et al. Surface-treated biocompatible ZnS quantum dots: Synthesis, photo-physical and microstructural properties. Electron. Mater. Lett. 10, 393–400 (2014). https://doi.org/10.1007/s13391-013-3211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3211-2

Keywords

Navigation