Skip to main content
Log in

Current trends in studies on reverse-mode polymer dispersed liquid-crystal films — A review

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Reverse-mode polymer dispersed liquid crystals (PDLCs) comprise an important new class of materials for optical device applications. Generally reverse-mode PDLCs are transparent and opaque in the absence and presence of an external field, respectively. Display devices based on reverse-mode PDLC technology are useful for large-area displays; because their fabrication for manufacturing shutters is considered to be easier and faster, they are also employed for automotive technology and smart windows. These devices can be operated at a low voltage, which conserves energy in intelligent-device applications. This work presents a comprehensive review of past research regarding reverse-mode PDLCs and includes the advantageous features, applications, and various fabrication methods of reverse-mode PDLCs and photo-chromic reverse-mode PDLCs. In addition, some new features of this technology that have recently been reported and future investigations by a variety of research groups are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Beev, S. Sainov, T. Angelov, and A. G. Petrov, J. Opt. Electr. Adv. Mat. 6, 799 (2004).

    Google Scholar 

  2. J. Shah, J. W. Brown, E. M. B-Dhoot, and A. J. Bandara, J. Mat. Chem. 10, 2627 (2000).

    Article  Google Scholar 

  3. J. Ding, H. Zhang, J. Lu, and Y. Yang, J. App. Phys. 34, 1928 (1995).

    Article  Google Scholar 

  4. K. G. Mishra and S. J. Gupta, Arch. Phys. Res. 2, 84 (2011).

    Google Scholar 

  5. X. Meng, Z. Wang, L. Wang, M. Pei, W. Guo, and X. Tang, Electron. Mater. Lett. 9, 605 (2013).

    Article  Google Scholar 

  6. S. M. Dmitriev, V. P. Dick, N. N. Kostyuk, T. A. Dick, and V. A. Loiko, J. Semicond. Phys, Quantum Electronics & Optoelectronics 13, 132 (2010).

    Google Scholar 

  7. J. I. Han and J. Y. Kim, Electron. Mater. Lett. in press (2013). [DOI:10.1007/s13391-013-3264-2]

    Google Scholar 

  8. P. S. Drzaic, J. Appl. Phys. 60, 2142 (1986).

    Article  Google Scholar 

  9. J. W. Doane, Liquid Crystals: Applications and Uses, 1, p. 361, World Scientific, Singapore (1990).

    Google Scholar 

  10. H. S. Kitzerow, Liq. Cryst. 16, 1 (1994).

    Article  Google Scholar 

  11. D. Coates, J. Mater. Chem. 5, 2063 (1995).

    Article  Google Scholar 

  12. Y. J. Jeon, Y. Bingzhu, J. T. Rhee, D. L. Cheung, and M. Jamil, Macromol. Theory Simul. 16, 643 (2007).

    Article  Google Scholar 

  13. Y. J. Jeon, G. H. Lee, J. E. Jang, K. Y. Hwang, F. Ahmad, M. Jamil, J. W. Lee, and J. E. Jung, Liq. Crys. 39, 11, 1314 (2012).

    Article  Google Scholar 

  14. E. Jung, G. H. Lee, J. E. Jang, K. Y. Hwang, F. Ahmad, M. Jamil, J. W. Lee, and Y. J. Jeon, Adv. Sci. Lett. 18, 225 (2012).

    Article  Google Scholar 

  15. J. E. Jung, G. H. Lee, J. E. Jang, K. Y. Hwang, F. Ahmad, M. Jamil, J. W. Lee, and Y. J. Jeon, J. App. Poly Sci. 124, 873 (2012).

    Article  Google Scholar 

  16. F. Ahmad, M. Jamil, J. W. Lee, and Y. J. Jeon, Coll. Polym. Sci. 290, 599 (2012).

    Article  Google Scholar 

  17. F. Ahmad, M. Jamil, Y. J. Jeon, J. W. Lee, J. E. Jung, and J. E Jang, Bull. Mater. Sci. 35, 221 (2012).

    Article  Google Scholar 

  18. F. Ahmad, M. Jamil, J. W. Lee, and Y. J. Jeon, Curr. Sci. 101, 1467 (2011).

    Google Scholar 

  19. J. E. Jung, G. H. Lee, J. E. Jang, K. Y. Hwang, F. Ahmad, M. Jamil, J. W. Lee, and Y. J. Jeon, Opt. Mater. 34, 256 (2011).

    Article  Google Scholar 

  20. G. P. Crawford, J. W. Doane, and S. Zumer, Handbook of Liquid Crystal Research, p. 347, Oxford University Press, New York (1997).

    Google Scholar 

  21. D. Cupelli, F. P. Nicoletta, G. De Filpo, P. Formoso, and G. Chidichimo, J. Poly Sci.: Part B: Poly. Phy. 49, 257 (2011).

    Article  Google Scholar 

  22. M. Macchione, D. Cupelli, G. De. Filpo, F. P. Nicoletta, and G. Chidichimo, Liq. Cryst. 27, 917 (2000).

    Article  Google Scholar 

  23. Y. D. Ma, B. G. Wu, and G. Xu, Proc. SPIE, 1257, 46 (1990).

    Article  Google Scholar 

  24. P. Nolan and D. Coates, Mol. Cryst. Liq. Cryst. Lett. 8, 75 (1991).

    Google Scholar 

  25. T. Gotoh and H. Murai, Appl. Phys. Lett., 60, 392 (1992).

    Article  Google Scholar 

  26. T. Gotoh, H. Murai, E. Hasegawa, and K. Mizoguchi, Mater. Res. Soc. Symp. Proc. 277, 217 (1992).

    Article  Google Scholar 

  27. F. P. Nicoletta and D. de Filpo, Appl. Phys. Lett. 74, 3945 (1999).

    Article  Google Scholar 

  28. R. A. M. Hikmet, J. Appl. Phys. 68, 1 (1990).

    Article  Google Scholar 

  29. R. A. M. Hikmet and B. H. Zwerver, Liq. Cryst. 12, 319 (1992).

    Article  Google Scholar 

  30. R. A. M. Hikmet, Mol. Cryst. Liq. Cryst. 213, 117 (1992).

    Article  Google Scholar 

  31. R. A. M. Hikmet, Liq. Cryst. 9, 405 (1991).

    Article  Google Scholar 

  32. R. A. M. Hikmet, Mol. Cryst. Liq. Cryst. 198, 357 (1991).

    Article  Google Scholar 

  33. D. K. Yang, L. C. Chien, and J. W. Doane, Appl. Phys. Lett. 60, 3102 (1992).

    Article  Google Scholar 

  34. L. Vicari, Optical Applications of Liquid Crystals, Series in Optics and Optoelectronics, Institute of Physics Publishing, UK (2003).

    Book  Google Scholar 

  35. T. J. Chen, Y. F. Chen, C. H. Sun, and J. J. Wu, Jpn. J. Appl. Phys. 43, L 557 (2004).

    Article  Google Scholar 

  36. T. J. Chen, Y. F. Chen, C. H. Sun, and J. J. Wu, J. Poly. Res. 13, 85 (2006).

    Article  Google Scholar 

  37. G. P. Crawford, Flexible Flat Panel Displays, p. 316, John Wiley & Sons, West Sussex, England (2005).

    Book  Google Scholar 

  38. M. MacChione, D. Cupelli, G. De Filpo, F. P. Nicoletta, and G. Chidichimo, Liq. Cryst. 27, 1337 (2000).

    Article  Google Scholar 

  39. Z. L. Lin, J. J. Sluss JR., T. E. Batchman, S. D. Heavin, and B. M. Fung, Mol. Crys. & Liq. Crys. Sci. and Tech. Sec A. Mol. Crys. and Liq. Crys. 220, 29 (1992).

    Article  Google Scholar 

  40. D. Coates, Displays, 14, 94 (1993).

    Article  Google Scholar 

  41. F. P. Nicoletta, G. De Filpo, J. Lanzo, and G. Chidichimo, Appl. Phys. Lett. 74, 3945 (1999).

    Article  Google Scholar 

  42. R. Yamaguchi, Y. Waki, and S. Sato, Jpn. J. Appl. Phys. 36, 2771 (1997).

    Article  Google Scholar 

  43. Y. D. Ma and B. G. Wu, US Patent, No. 5056898 (1991).

    Google Scholar 

  44. J. Wang, US Patent, No. 5270 843 (1993).

    Google Scholar 

  45. H. Murai, T. Gotoh, T. Nakata, and E. Hasegawa, J. Appl. Phys. 81, 1962 (1997).

    Article  Google Scholar 

  46. F. P. Nicoletta, G. De Filpo, D. Cupelli, M. Macchione, and G. Chidichimo, Appl. Phys. Lett. 79, 4325 (2001).

    Article  Google Scholar 

  47. G. Chidichimo and G. De Filpo, US Patent, No. 6383677B1 (2002).

    Google Scholar 

  48. G. De Filpo, P. Giovanni, M. Nevio, I. Rita, F. P. Nicoletta, and G. Chidichimo, Liq. Cryst. 29, 295 (2000).

    Article  Google Scholar 

  49. G. Di Profio, F. P. Nicoletta, G. De Filpo, and G. Chidichimo, Langmuir. 18, 3034 (2002).

    Article  Google Scholar 

  50. A. Romani, G. Chidichimo, P. Formoso, S. Manfredi, G. Favaro, and U. Mazzucato, J. Phys. Chem. B, 106, 9490 (2002).

    Article  Google Scholar 

  51. I. Keiichiro, S. Mizue, N. Naoki, and N. Nobuhiko, Res. Bull. Meisei Univ. Phys. Sci. Eng. 38, 25 (2002).

    Google Scholar 

  52. M. Date, S. Suyama, K. Kato, and K. Uehira, US Patent, No. 6618104 B1 (2003).

    Google Scholar 

  53. U. Maschke, X. Coqueret, R. Vendamme, T. Pakula, and M. Benmouna, Mol. Cryst. Liq. Cryst. 413, 21 (2004).

    Article  Google Scholar 

  54. M. Macchione, G. De Filpo, F. P. Nicoletta, and G. Chidichimo, Liq. Cryst. 32, 315 (2005).

    Article  Google Scholar 

  55. S. H. Hwang, K. J. Yang, S. H. Woo, B. D. Choi, E. H. Kim, and B. K. Kim, Mol. Cryst. Liq. Cryst. 470, 163 (2007).

    Article  Google Scholar 

  56. G. De Filpo, R. Cassano, L. Tortora, F. P. Nicoletta, and G. Chidichimo, Liq. Cryst. 35, 45 (2008).

    Article  Google Scholar 

  57. R. A. Ramsey and S. C. Sharma, Appl. Phys. B, 93, 481 (2008).

    Article  Google Scholar 

  58. G. Chidichimo, G. De Filpo, S. Manfredi, S. Mormile, L. Tortora, C. Gallucci, and R. Cassano, Mol. Cryst. Liq. Cryst. 500, 10 (2009).

    Article  Google Scholar 

  59. D. Cupelli, F. P. Nicoletta,, S. Manfredi, G. De Filpo, and G. Chidichimo, Sol. Ener. Mater & Sol. Cells. 93, 329 (2009).

    Article  Google Scholar 

  60. Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang, J. Appl. Poly. Sci. 111, 1353 (2009).

    Article  Google Scholar 

  61. R. Yamaguchi and L. Xiong, Jpn. J. Appl. Phys. 49, 060203 (2010).

    Article  Google Scholar 

  62. H. H. Liang, C. C. Wu, P. H. Wang, and J. Y. Lee, Opt. Mat. 33, 1195 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Jamil or Y. J. Jeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, F., Jamil, M. & Jeon, Y.J. Current trends in studies on reverse-mode polymer dispersed liquid-crystal films — A review. Electron. Mater. Lett. 10, 679–692 (2014). https://doi.org/10.1007/s13391-013-3279-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3279-8

Keywords

Navigation