Skip to main content
Log in

Characteristics of photoconductive UV photodetector based on ZnO nanorods grown on polyethylene naphthalate substrate by chemical bath deposition method

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Vertically aligned ZnO nanorods were synthesized on a polyethylene naphthalate (PEN) substrate using a chemical bath deposition method at a low temperature. The structural and optical investigations revealed the high quality of the fabricated ZnO nanorods on flexible substrate. A metal-semiconductor-metal UV photodetector based on ZnO nanorods was fabricated on the PEN substrate. The optoelectronic characteristics of fabricated UV photodetector were studied in the dark and under 325 nm UV light illumination at −3 V and 3 V bias voltages. The responsivity and photosensitivity of the ZnO nanorod UV photodetector were 2.856 A/W and 1175% at 3 V bias voltage, respectively. Moreover, the response and the recovery times measured during the turn-on and turnoff of UV illumination were 1.2 s and 1.8 s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Monroy, F. Omnes, and F. Calle, Semicond. Sci. Technol. 18, R33 (2003).

    Article  Google Scholar 

  2. F. Auret, S. Goodman, M. Hayes, M. Legodi, H. Van Laarhoven, and D. C. Look, Appl. Phys. Lett. 79, 3074 (2001).

    Article  Google Scholar 

  3. T. Ma, M. Guo, M. Zhang, Y. Zhang, and X. Wang, Nanotechnology 18, 035605 (2007).

    Article  Google Scholar 

  4. S. Hullavarad, N. Hullavarad, P. Karulkar, A. Luykx, and P. Valdivia, Nanoscale Res. Lett. 2, 161 (2007).

    Article  Google Scholar 

  5. A. Ohtomo, M. Kawasaki, Y. Sakurai, I. Ohkubo, R. Shiroki, Y. Yoshida, T. Yasuda, Y. Segawa, and H. Koinuma, Mater. Sci. Eng.: B 56, 263 (1998).

    Article  Google Scholar 

  6. Y. Chen, D. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).

    Article  Google Scholar 

  7. Y. Lang, H. Gao, W. Jiang, L. Xu, and H. Hou, Sensors and Actuators A: Physical 174, 43 (2012).

    Article  Google Scholar 

  8. S. P. Chang, C. Y. Lu, S. J. Chang, Y. Z. Chiou, T. J. Hsueh, and C. L. Hsu, Selected Topics in Quantum Electronics, IEEE J. 17, 990 (2011).

    Article  Google Scholar 

  9. P. Y. Yang, J. L. Wang, W.C. Tsai, S. J. Wang, J. C. Lin, I. C. Lee, C. T. Chang, and H. C. Cheng, Thin Solid Films 518, 7328 (2010).

    Article  Google Scholar 

  10. X. Zhang, X. Han, J. Su, Q. Zhang, and Y. Gao, Appl. Phys. A 107, 255 (2012).

    Article  Google Scholar 

  11. R. Shabannia and H. Abu Hassan, Semicond. Sci. Technol. 28, 115007 (2013).

    Article  Google Scholar 

  12. Y.-K. Su, S. Peng, L. Ji, C. Wu, W. Cheng, and C. Liu, Langmuir 26, 603 (2009).

    Article  Google Scholar 

  13. L. Ji, S. Peng, Y.-K. Su, S.-J. Young, C. Wu, and W. Cheng, Appl. Phys. Lett. 94, 203106 (2009).

    Article  Google Scholar 

  14. N. Al-Hardan, M. Abdullah, N. Ahmed, F. Yam, and A. Abdul Aziz, Superlattices and Microstructures 51, 765 (2012).

    Article  Google Scholar 

  15. I. C. Yao, T.-Y. Tseng, and P. Lin, Sensors and Actuators A: Physical 178, 26 (2012).

    Article  Google Scholar 

  16. T.-P. Chen, S.-J. Young, S.-J. Chang, C.-H. Hsiao, and Y.-J. Hsu, Nanoscale Res. Lett. 7, 1 (2012).

    Article  Google Scholar 

  17. E. L. Bedia, S. Murakami, T. Kitade, and S. Kohjiya, Polymer 42, 7299 (2001).

    Article  Google Scholar 

  18. L. Guo, H. Zhang, D. Zhao, B. Li, Z. Zhang, M. Jiang, and D. Shen, Solid State Ionics 209, 43 (2012).

    Google Scholar 

  19. M. S. Kim, K. G. Yim, H. Y. Choi, M. Y. Cho, G. S. Kim, S. M. Jeon, D.-Y. Lee, J. S. Kim, J. S. Kim, and J.-S. Son, J. Crystal Growth 326, 195 (2011).

    Article  Google Scholar 

  20. R. Ajimsha, R. Manoj, P. Aneesh, and M. Jayaraj, Current Appl. Phys. 10, 693 (2010).

    Article  Google Scholar 

  21. R. Shabannia and H. Abu Hassan, Superlattices and Microstructures 62, 242 (2013).

    Article  Google Scholar 

  22. R. Shabannia and H. Abu Hassan, Mater. Lett. 98,135 (2013).

    Article  Google Scholar 

  23. R. Shabannia and H. A. Hassan, Appl. Phys. A 114, 579 (2014).

    Article  Google Scholar 

  24. L. Cui, H. Y. Zhang, G. G. Wang, F. X. Yang, X. P. Kuang, R. Sun, and J. C. Han, Appl. Surface Sci. 258, 2479 (2012).

    Article  Google Scholar 

  25. J. Petersen, C. Brimont, M. Gallart, O. Crégut, G. Schmerber, P. Gilliot, B. Honerlage, C. Ulhaq-Bouillet, J. Rehspringer, and C. Leuvrey, J. Appl. Phys. 104, 113539 (2008).

    Article  Google Scholar 

  26. C. Tonon, C. Duvignacq, G. Teyssedre, and M. Dinguirard, J. Phys. D: Appl. Phys. 34, 124 (2000).

    Article  Google Scholar 

  27. S. M. Sze, Physics of Semiconductor Devices, 2nd ed., p. 245, New York, USA: John Wiley & Sons (1981).

    Google Scholar 

  28. M. W. Allen, M. M. Alkaisi, and S. M. Durbin, Appl. Phys. Lett. 89, 1 (2006).

    Article  Google Scholar 

  29. L. Li, P. Wu, X. Fang, T. Zhai, L. Dai, M. Liao, Y. Koide, H. Wang, Y. Bando, and D. Golberg, Adv. Mater. 22, 3161 (2010).

    Article  Google Scholar 

  30. H. Endo, M. Sugibuchi, K. Takahashi, S. Goto, S. Sugimura, K. Hane, and Y. Kashiwaba, Appl. Phys. Lett. 90, 121906 (2007).

    Article  Google Scholar 

  31. B. Yuan, X.J. Zheng, Y. Q. Chen, B. Yang, and T. Zhang, Solid-State Electron. 55, 49 (2011).

    Article  Google Scholar 

  32. D. Y. Jiang, J. Y. Zhang, Y. M. Lu, K. W. Liu, D. X. Zhao, Z. Z. Zhang, D. Z. Shen, and X. W. Fan, Solid-State Electron. 52, 679 (2008).

    Article  Google Scholar 

  33. P. Chakrabarti, A. Krier, and A. F. Morgan, IEEE Trans. on Electron Devices 50, 2049 (2003).

    Article  Google Scholar 

  34. A. Bera and D. Basak, Appl. Phys. Lett. 93, 053102 (2008).

    Article  Google Scholar 

  35. Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, Appl. Phys. Lett. 94, 023110 (2009).

    Article  Google Scholar 

  36. J. D. Prades, F. Hernandez-Ramirez, R. Jimenez-Diaz1, M. Manzanares, T. Andreu, A. Cirera, A. Romano-Rodriguez, and J. R. Morante, Nanotechnology 19, 465501 (2008).

    Article  Google Scholar 

  37. T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, and D. Golberg, Adv. Functional Mater. 20, 4233 (2010).

    Article  Google Scholar 

  38. O. Lupan, L. Chow, and G. Chai, Sensors and Actuators B: Chemical 141, 51 (2009).

    Article  Google Scholar 

  39. C. Soci, A. Zhang, B. Xiang, S. Dayeh, D. Aplin, J. Park, X. Bao, Y. Lo, and D. Wang, Nano Lett. 7, 1003 (2007).

    Article  Google Scholar 

  40. P. Sharma, K. Sreenivas, and K. Rao, J. Appl. Phys. 93, 3963 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shabannia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabannia, R., Hassan, H.A. Characteristics of photoconductive UV photodetector based on ZnO nanorods grown on polyethylene naphthalate substrate by chemical bath deposition method. Electron. Mater. Lett. 10, 837–843 (2014). https://doi.org/10.1007/s13391-014-3245-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-3245-0

Keywords

Navigation