Skip to main content
Log in

Numerical simulation of high power LED heat-dissipating system

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this paper, thermal analysis of the heat dissipation under different heat sink for high-power white Light Emitting Diode (LED) is presented. Junction temperature of LED is elevated as the power of LED increases, which brings up deterioration of light efficiency and other side effects. Heat dissipation is another design concern other than material and illumination efficiency. The purpose of this paper is to investigate the cooling of high-power LED chips and modules for design of heat sinks. Three types of heat sinks are designed for a tandem 12-chip module and an extensive numerical investigation of the heat sink design performance is conducted by Computational Fluid Dynamics software Fluent. The effects of heat sink geometry and adhesive material are also investigated. Design variables are the thickness of sink base, number, thickness and length of fins. The total wetted area is the dominant factor to the junction temperature. The objective of design regarding the junction temperatures around 50°C is easily achieved. However, its effect is limited at high values of these parameters, furthermore an excessive number of fins incurs reverse consequence due to problem of ventilation also waste of material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Steranka, J. Bhat, D. Collins, L. Cook, M. G. Craford, R. Fletcher, N. Gardner, P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G. Harbers, M. Ludowise, P. S. Martin, M. Misra, G. Mueller, R. Mueller-Mach, S. Rudaz, Y.-C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T. Trottier, and J. J. Wierer, Physica Status Solidi (a) 194, 380 (2002).

    Article  Google Scholar 

  2. S. Narasimhan, R. Nair, and A. Bar-Cohen, IEEE Trans. on Comp. and Pack. Tech. 26, 136 (2003).

    Article  Google Scholar 

  3. R. L. Linton and D. Agonafer, IEEE Trans. on Comp, Pack. and Manu. Tech. — Part A 18, 517 (1995).

    Article  Google Scholar 

  4. N. Narendran and Y. Gu, J. Display Technol. 1, 167 (2005).

    Article  Google Scholar 

  5. Y. Cheng, G. Xu, D. Zhu, W. Zhu, and L. Luo, IEEE Trans. on Comp. and Packaging Tech. 29, 39 (2006).

    Article  Google Scholar 

  6. Y. Lai and N. Cordero, Proc. EuroSimE, Com, 1, Milan, Italy (2006).

    Google Scholar 

  7. O. S. Ling and K. L. Tan, Thermal Modeling of Light Emitting Diode, Avago Technologies, http://www.digikey.com/us/en/techzone/lighting/resources/articles/thermal-modelingof-high-power-leds.html (2013).

    Google Scholar 

  8. N. Yeh and J. P. Chung, Renewable and Sustainable Energy Reviews 13, 2175 (2009).

    Article  Google Scholar 

  9. K. C. Yung, H. Liem, H. S. Choy, and W. K. Lun, International Communications in Heat and Mass Transfer 37, 1266 (2010).

    Article  Google Scholar 

  10. D. Lu, C. Liu, X. Lang, B. Wang, Z. Li, W. M. Peter Lee, and S. W. Ricky Lee, Pro. of Electronic Components and Technology Conference, p. 667, IEEE CPMT, Lake Buena Vista, FL, USA (2011).

    Google Scholar 

  11. C. Liu, Dong Lu, X. Lang, A. Choi, and W.M. Lee, Pro. of Electronic Material and Packaging Conference, p. 168, IEEE CPMT HK, Hong Kong (2012).

    Google Scholar 

  12. T. Barth and M. Ohlberger, Finite Volume Methods: Foundation and Analysis Encyclopedia of Computational Mechanics, (E. Stein, R. de Borst and T. J. R. Hughes), John Wiley & Sons, NY, USA (2004).

  13. M. P. Liao, C. D. Tu, R. C. Lin, Y. S. Lin, P. C. Liu, and W. S. Hwang, J. Sci. Eng. Technol. 3, 99 (2007).

    Google Scholar 

  14. W. H. Chi, T. L. Chou, C. N. Han, S. Y. Yang, and K. N. Chiang, IEEE Transactions on Components and Packaging Technologies 33, 713 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiang-Chen Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, SJ., Hsu, HC., Fu, SL. et al. Numerical simulation of high power LED heat-dissipating system. Electron. Mater. Lett. 10, 497–502 (2014). https://doi.org/10.1007/s13391-014-8003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-8003-9

Keywords

Navigation