Skip to main content
Log in

Development of Ag/WO3/ITO thin film memristor using spray pyrolysis method

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The unique nonlinear relationship between charge and magnetic flux along with the pinched hysteresis loop in I-V plane provide memory with resistance combinations of attribute to Memristor which lead to their novel applications in non volatile memory, nonlinear dynamics, analog computations and neuromorphic biological systems etc. The present paper reports development of Ag/WO3/ITO thin film memristor device using spray pyrolysis method. The structural, morphological and electrical properties of the thin film memristor device are further characterized using x-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and semiconductor device analyzer. The memristor is simulated using linear dopent drift model to ascertain the theoretical and experimental conformations. For the simulation purpose, the width of doped region (w) limited to the interval [0, D] is considered as a state variable along with the window function characterized by the equation f (x) = w (1 − w). The reported memristor device exhibits the symmetric pinched hysteresis loop in I-V plane within the low operating voltage (±1 V).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. O. Chua, IEEE Trans. Circuit. Theory 18, 507 (1971).

    Article  Google Scholar 

  2. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008).

    Article  Google Scholar 

  3. K. H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa, and W. Lu, Nano Lett. 12, 389 (2011).

    Article  Google Scholar 

  4. J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nature Nanotechnol. 3, 429 (2008).

    Article  Google Scholar 

  5. B. Muthuswamy, Int. J. Bifurcat. Chaos. 20, 335 (2010).

    Google Scholar 

  6. M. Itoh and L. Chua, Int. J. Bifurcat. Chaos. 18, 3183 (2008).

    Article  Google Scholar 

  7. T. D. Dongale, Health Inform.-Int. J. 2, 15 (2013).

    Article  Google Scholar 

  8. S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, Nano Lett. 10, 1297 (2010).

    Article  Google Scholar 

  9. Y. N. Joglekar and S. J. Wolf, Eur. J. Phys. 30, 661 (2009).

    Article  Google Scholar 

  10. T. A. Wey and S. Benderli, Electron. Lett. 45, 1103 (2009).

    Article  Google Scholar 

  11. Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali, J. J. Yang, and R. S. Williams, Nano Lett. 9, 3640 (2009).

    Article  Google Scholar 

  12. Y. V. Pershin and M. Di Ventra, Phys. Rev. B. 78, 113309 (2008).

    Article  Google Scholar 

  13. T. D. Dongale, S. S. Shinde, R. K. Kamat, and K. Y. Rajpure, J. Alloy. Compd. 593, 267 (2014).

    Article  Google Scholar 

  14. S. Yoon, J. S. Choi, Y. S. Kim, S. H. Hong, I. R. Hwang, Y. C. Park, and B. H. Park, Appl. Phys. Express 4, 041101 (2011).

    Article  Google Scholar 

  15. S. E. Savel’Ev, A. S. Alexandrov, A. M. Bratkovsky, and R. S. Williams, Nanotechnology 22, 254011 (2011).

    Article  Google Scholar 

  16. S. Kim, S. Choi, and W. Lu, ACS Nano. 8, 2369 (2014).

    Article  Google Scholar 

  17. X. He, Y. Yin, J. Guo, H. Yuan, Y. Peng, Y. Zhou, and D. Tang, Nanoscale Res. Lett. 8, 1 (2013).

    Article  Google Scholar 

  18. R. Zhang, S. U. Yuldashev, J. C. Lee, V. S. alishev, T. W. Kang, and D. J. Fu, Microelectron. Eng. 112, 31 (2013).

    Article  Google Scholar 

  19. L. Ying-Tao, L. Shi-Bing, L. Hang-Bing, L. Qi, W. Qin, W. Yan, and L. Ming, Physica B. 20, 017305 (2011).

    Google Scholar 

  20. L. Chua, Appl. Phys. A Mater. Sci. Process 102, 765 (2011).

    Article  Google Scholar 

  21. Y. Li, S. Long, Q. Liu, Q. Wang, M. Zhang, H. Lv, and M. Liu, Phys. Status Solidi-RRL 4, 124 (2010).

    Article  Google Scholar 

  22. P. S. Patil, Mater. Chem. Phys. 59, 185 (1999).

    Article  Google Scholar 

  23. V. V. Ganbavle, G. L. Agawane, A. V. Moholkar, J. H. Kim, and K. Y. Rajpure, J. Mater. Eng. Perform. 23, 1204 (2014).

    Article  Google Scholar 

  24. S. V. Mohite and K. Y. Rajpure, Opt. Mater. 36, 833 (2014).

    Article  Google Scholar 

  25. K. H. Choi, M. Mustafa, K. Rahman, B. K. Jeong, and Y. H. Doh, Appl. Phys. A Mater. Sci. Process. 106, 165 (2012).

    Article  Google Scholar 

  26. T. D. Dongale, K. P. Patil, S. B. Mullani, K. V. More, S. D. Delekar, P. S. Patil, P. K. Gaikwad, and R. K. Kamat, Mat. Sci. Semicon. Proc. 35, 174 (2015).

    Article  Google Scholar 

  27. T. D. Dongale, K. P. Patil, P. K. Gaikwad, and R. K. Kamat, Mat. Sci. Semicon. Proc. 38, 228 (2015).

    Article  Google Scholar 

  28. S. S. Shinde and T. D. Dongle, J. Semicond. 36, 034001 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Rajpure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dongale, T.D., Mohite, S.V., Bagade, A.A. et al. Development of Ag/WO3/ITO thin film memristor using spray pyrolysis method. Electron. Mater. Lett. 11, 944–948 (2015). https://doi.org/10.1007/s13391-015-4180-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4180-4

Keywords

Navigation