Skip to main content
Log in

Enhanced multiferroic properties in epitaxial Yb-doped BiFeO3 thin films

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We report the enhanced multiferroic properties of a ytterbium (Yb)- doped BiFeO3 thin film (Bi0.85Yb0.15FeO3) deposited on a (001) SrRuO3/(100) SrTiO3 substrate by pulsed laser deposition. The crystal structure, surface morphology, ferroelectric domain structure, and the electrical and magnetic behavior of the epitaxial Bi0.85Yb0.15FeO3 film, 100 nm in thickness, were investigated. The results were compared with those of an undoped BiFeO3 thin film. The x-ray diffraction patterns showed that both films have tetragonal-like crystal structures. Atomic force microscopy showed that the Bi0.85Yb0.15FeO3 and BiFeO3 films have flat and clear surface steps, characteristic of a layer-by-layer growth mechanism. Furthermore, the strip-like ferroelectric domain structures were clearly observed in piezoelectric force microscopy. The Bi0.85Yb0.15FeO3 films had significantly higher remanent polarizations of approximately 73 μC/cm2 and lower leakage currents compared to the BiFeO3 thin film. Ferromagnetic enhancement was also observed in the Bi0.85Yb0.15FeO3 film at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).

    Article  Google Scholar 

  2. H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303, 661 (2004).

    Article  Google Scholar 

  3. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).

    Article  Google Scholar 

  4. M. Bibes and A. Barthelemy, Nat. Mater 7, 425 (2008).

    Article  Google Scholar 

  5. K. F. Wang, J. M. Liu, and Z. F. Ren, Adv. Phys. 58, 321 (2009).

    Article  Google Scholar 

  6. J. Ma, J. Hu, Z. Li, and C.-W. Nan, Adv. Mater. 23, 1062 (2011).

    Article  Google Scholar 

  7. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Phys. Rev. B 67, 180401 (2003).

    Article  Google Scholar 

  8. Z. J. Huang, Y. Cao, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, Phys. Rev. B 56, 2623 (1997).

    Article  Google Scholar 

  9. J. Y. Son, G. K. Bog, C. H. Kim, and J. H. Cho, Appl. Phys. Lett. 84, 4971 (2004).

    Article  Google Scholar 

  10. C. D. Cruz, F. Yen, B. Lorenz, Y. Q. Wang, Y. Y. Sun, M. M. Gospodinov, and C. W. Chu, Phys. Rev. B 71, 060407 (2005).

    Article  Google Scholar 

  11. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).

    Article  Google Scholar 

  12. G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).

    Article  Google Scholar 

  13. Y. H. Chu, Q. He, C.-H. Yang, P. Yu, L. W. Martin, P. Shafer, and R. Ramesh, Nano Lett. 9, 1726 (2009).

    Article  Google Scholar 

  14. K.-T. Ko, M. H. Jung, Q. He, J. H. Lee, C. S. Woo, K. Chu, J. Seidel, B.-G. Jeon, Y. S. Oh, K. H. Kim, W.-I. Liang, H.-J. Chen, Y.-H. Chu, Y. H. Jeong, R. Ramesh, J.-H. Park, and C.-H. Yang, Nat. Commun. 2, 567 (2011).

    Article  Google Scholar 

  15. C.-H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, and J. Seidel, Phys. Chem. Chem. Phys. 14, 15953 (2012).

    Article  Google Scholar 

  16. N. Siadou, I. Panagiotopoulos, N. Kourkoumelis, T. Bakas, K. Brintakis, and A. Lappas, Adv. Mater. Sci. Eng. 2013, 6 (2013).

    Article  Google Scholar 

  17. B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin, and D. Viehland, Phys. Rev. B 69, 064114 (2004).

    Article  Google Scholar 

  18. X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. Mac-Manus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005).

    Article  Google Scholar 

  19. M. Kumar and K. L. Yadav, J. Appl. Phys. 100, 074111 (2006).

    Article  Google Scholar 

  20. S. K. Singh, H. Ishiwara, and K. Maruyama, Appl. Phys. Lett. 88, 262908 (2006).

    Article  Google Scholar 

  21. S. Pattanayak, R. N. P. Choudhary, and P. R. Das, Electron. Matter. Lett. 10, 165 (2014).

    Article  Google Scholar 

  22. Z. X. Cheng, X. L. Wang, S. X. Dou, H. Kimura, and K. Ozawa, J. Appl. Phys. 104, 116109 (2008).

    Article  Google Scholar 

  23. V. V. Lazenka, A. F. Ravinski, I. I. Makoed, J. Vanacken, G. Zhang, and V. V. Moshchalkov, J. Appl. Phys. 111, 123916 (2012).

    Article  Google Scholar 

  24. F. Yan, M. O. Lai, and L. Lu, J. Phys. D: Appl. Phys. 45, 325001 (2012).

    Article  Google Scholar 

  25. V. V. Lazenka, M. Lorenz, H. Modarresi, K. Brachwitz, P. Schwinkendorf, T. Böntgen, J. Vanacken, M. Ziese, M. Grundmann, and V. V. Moshchalkov, J. Phys. D: Appl. Phys. 46, 175006 (2013).

    Article  Google Scholar 

  26. Q. Yun, Y. Bai, J. Chen, W. Gao, A. Bai, and S. Zhao, Mater. Lett. 129, 166 (2014).

    Article  Google Scholar 

  27. A. Bai, S. Zhao, and J. Chen, J. Nanomater. 2014, 509408 (2014).

    Article  Google Scholar 

  28. V. R. Palkar, D. C. Kundaliya, S. K. Malik, and S. Bhattacharya, Phys. Rev. B 69, 212102 (2004).

    Article  Google Scholar 

  29. G. L. Yuan and O. Siu Wing, J. Appl. Phys. 100, 024109 (2006).

    Article  Google Scholar 

  30. H. Li, W. Yang, Z. Zhou, and H. Tian, Electron. Mater. Lett. 9, 649 (2013).

    Article  Google Scholar 

  31. F. Kubel and H. Schmid, Acta Crystallogr. B 46, 698 (1990).

    Article  Google Scholar 

  32. W. H. Kim and J. Y. Son, Appl. Phys. Lett. 103, 132907 (2013).

    Article  Google Scholar 

  33. K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, Proc. IEEE 91, 305 (2003).

    Article  Google Scholar 

  34. G. W. Pabst, L. W. Martin, Y.-H. Chu, and R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007).

    Article  Google Scholar 

  35. W. Xing, Y. Ma, Z. Ma, Y. Bai, J. Chen, and S. Zhao, Smart Mater. Struct. 23, 085030 (2014).

    Article  Google Scholar 

  36. G. D. Hu, S. H. Fan, C. H. Yang, and W. B. Wu, Appl. Phys. Lett. 92, 192905 (2008).

    Article  Google Scholar 

  37. K. Abe, N. Sakai, J. Takahashi, H. Itoh, N. Adachi, and T. Ota, Jpn. J. Appl. Phys. 49, 09–01 (2010).

    Google Scholar 

  38. Z. Ye, M. H. Tang, Y. C. Zhou, X. J. Zheng, C. P. Cheng, Z. S. Hu, and H. P. Hu, Appl. Phys. Lett. 90, 042902 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Yeog Son or Joonkyung Jang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, Y., Seo, J., Son, J.Y. et al. Enhanced multiferroic properties in epitaxial Yb-doped BiFeO3 thin films. Electron. Mater. Lett. 11, 609–613 (2015). https://doi.org/10.1007/s13391-015-4469-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4469-3

Keywords

Navigation