Skip to main content
Log in

Magnetic and dielectric study of Fe-doped CdSe nanoparticles

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Nanoparticles of cadmium selenide (CdSe) and Fe (5% and 10%) doped CdSe have been synthesized by soft chemical route and found to have cubic structure. The magnetic field dependent magnetization measurement of the doped samples indicates the presence of anti-ferromagnetic order. The temperature dependent magnetization (M-T) measurement under zero field cooled and field cooled conditions has also ruled out the presence of ferromagnetic component in the samples at room temperature as well as low temperature. In order to estimate the anti-ferromagnetic coupling among the doped Fe atoms, an M-T measurement at 500 Oe has been carried out, and the Curie-Weiss temperature θ of the samples has been estimated from the inverse of susceptibility versus temperature plots. The dielectric relaxation peaks are observed in the spectra of imaginary part of dielectric constant. The temperature dependent relaxation time is found to obey the Arrhenius law having activation energy ~ 0.4 eV for Fe doped samples. The frequency dependent conductivity spectra are found to obey the power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Dietl, Nat. Mater. 9, 965 (2010).

    Article  Google Scholar 

  2. T. Dietl, Semicond. Sci. Technol. 17, 377 (2002).

    Article  Google Scholar 

  3. H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Phys. Rev. Lett. 99, 127201 (2007).

    Article  Google Scholar 

  4. R. Q. Wu, G. W. Peng, L. Liu, Y. P. Feng, Z. G. Huang, and Q. Y. Wu, Appl. Phys. Lett. 89, 062505 (2006).

    Article  Google Scholar 

  5. İ. P. Duru, C. Değer, T. Kalaycı, and M. Arucu, J. Mag. Mag. Mat. 396, 268 (2015).

    Article  Google Scholar 

  6. Y. J. Tao, L. S. Jun, and X. Y. Chen, J. Mag. Mag. Mat. 410, 265 (2016).

    Article  Google Scholar 

  7. W. Kongping, G. Shulin, T. Kun, Y. Jiandong, Z. Shunming, Z. Mengran, H. Yourui, X. Mingxiang, Z. Rong, and Z. Youdou, J. Mag. Mag. Mat. 324, 1649 (2012).

    Article  Google Scholar 

  8. W. Liu, W. Li, Z. Hu, Z. Tang, and X. Tang, J. Appl. Phys. 110, 013901 (2011).

    Article  Google Scholar 

  9. L. R. Shah, H. Zhu, W. G. Wang, B. Ali, T. Zhu, X. Fan, Y. Q. Song, Q. Y. Wen, H. W. Zhang, S. I. Shah, and J. Q. Xiao, J. Phys. D: Appl. Phys. 43, 035002 (2010).

    Article  Google Scholar 

  10. S. Zhou, K. Potzger, J. von. Borany, R. Grotzschel, W. Skorupa, M. Helm, and J. Fassbender, Phys. Rev. B. 77, 035209 (2008).

    Article  Google Scholar 

  11. B. Pal and P. K. Giri, J. Appl. Phys. 108, 084322 (2010).

    Article  Google Scholar 

  12. N. Theodoropoulou, A. F. Hebard, M. E. Overberg, C. R. Abernathy, S. J. Pearton, S. N. G. Chu, and R. G. Wilson, Phys. Rev. Lett. 89, 107203 (2002).

    Article  Google Scholar 

  13. B. Pandey, S. Ghosh, P. Srivastava, P. Kumar, D. Kanjilal, S. Zhou, and H. Schmidt, J. Appl. Phys. 107, 023901 (2010).

    Article  Google Scholar 

  14. S. Das, A. Dutta, S. Banerjee, and T. P. Sinha, Mater. Sci. Semiconductor Process. 18, 152 (2014).

    Article  Google Scholar 

  15. A. Kaminski and S. D. Sarma, Phys. Rev. Lett. 17, 247202 (2002).

    Article  Google Scholar 

  16. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).

    Article  Google Scholar 

  17. K. R. Kittilstved, W. K. Liu, and D. R. Gamelin, Nat. Mater. 2, 291 (2006).

    Article  Google Scholar 

  18. X. F. Wang, J. B. Xu, N. Ke, J. G. Yu, J. Wang, Q. Li, H. C. Ong, and R. Zhang, Appl. Phys. Lett. 88, 223108 (2006).

    Article  Google Scholar 

  19. H. S. Hsu, J. C. A. Huang, S. F. Chen, and C. P. Liu, Appl. Phys. Lett. 90, 102506 (2007).

    Article  Google Scholar 

  20. S. Das, A. Dutta, B. Ghosh, S. Banerjee, and T. P. Sinha, J. Phys. Chem. Sol. 75, 1245 (2014).

    Article  Google Scholar 

  21. R. Tripathi, A. Dutta, S. Das, A. Kumar, and T. P. Sinha, Appl. Nanosci. 6, 175 (2016).

    Article  Google Scholar 

  22. B. S. Singh, V. L. Mukta, K. D. Sadgopal, G. Shubha, and K. K. Sulabha, Phys. Rev. B. 80, 235421 (2009).

    Article  Google Scholar 

  23. D. Rubi, J. Fortcubetra, A. Calleje, L. Aragones, X. G. Capdevile, and M. Segarra, Phys. Rev. B. 75, 155322 (2007).

    Article  Google Scholar 

  24. G. Lawes, A. S. Risbud, A. P. Ramirez, and R. Seshadri, Phys. Rev. B. 71, 045201 (2005).

    Article  Google Scholar 

  25. A. K. Jonscher, Universal Relaxation Law, Chelsea Dielectrics Press, London, UK (1996).

    Google Scholar 

  26. S. Mahboob, G. Prasad, and G. S. Kumar, Bull. Mater. Sci. 29, 35 (2006).

    Article  Google Scholar 

  27. T. Ishii, T. Abe, and H. Shirai, Solid State Commun. 127, 737 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayantani Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Banerjee, S., Bandyopadhyay, S. et al. Magnetic and dielectric study of Fe-doped CdSe nanoparticles. Electron. Mater. Lett. 14, 52–58 (2018). https://doi.org/10.1007/s13391-017-6265-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6265-8

Keywords

Navigation