Skip to main content
Log in

Electronic Band Transitions in γ-Ge3N4

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Electronic band structure in germanium nitride having spinel structure, γ-Ge3N4, was examined using two spectroscopic techniques, cathodoluminescence and synchrotron-based photoluminescence. The sample purity was confirmed by x-ray diffraction and Raman analyses. The spectroscopic measurements provided first experimental evidence of a large free exciton binding energy De≈0.30 eV and direct interband transitions in this material. The band gap energy Eg = 3.65 ± 0.05 eV measured with a higher precision was in agreement with that previously obtained via XES/XANES method. The screened hybrid functional Heyd–Scuseria–Ernzerhof (HSE06) calculations of the electronic structure supported the experimental results. Based on the experimental data and theoretical calculations, the limiting efficiency of the excitation conversion to light was estimated and compared with that of w-GaN, which is the basic material of commercial light emitting diodes. The high conversion efficiency, very high hardness and rigidity combined with a thermal stability in air up to ~ 700 °C reveal the potential of γ-Ge3N4 for robust and efficient photonic emitters.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

taken from periphery part of γ-Ge3N4 sample at T = 300 K (a) and 5 K (b, c); intensity of (c) is that of (b) × 5

Fig. 4

taken from periphery part of γ-Ge3N4 sample at T = 5 K: Δt1 = 0–20 ns (b) and Δt2 = 0–200 ns (c). All intensities are normalized for better visibility

Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leinenweber, K., O’Keeffe, M., Somayazulu, H.H.M., McMillan, P.F., Wolf, G.H.: Synthesis and structure refinement of the spinel, γ-Ge3N4. Chem. Eur. J. 5, 3076–3078 (1991)

    Article  Google Scholar 

  2. Serghiou, G., Miehe, G., Tschauner, O., Zerr, A., Boehler, R.: Synthesis of a cubic Ge3N4 phase at high pressures and temperatures. J. Chem. Phys. 111, 4659–4662 (1999)

    Article  CAS  Google Scholar 

  3. Zerr, A., Riedel, R., Sekine, T., Lowther, J.E., Ching, W.-Y., Tanaka, I.: Recent advances in new hard high-pressure nitrides. Adv. Mater. 18, 2933–2948 (2006)

    Article  CAS  Google Scholar 

  4. Shemkunas, M.P., Petuskey, W.T., Chizmeshya, A.V.G., Leinenweber, K., Wolf, G.H.: Hardness, elasticity, and fracture toughness of polycrystalline spinel germanium nitride and tin nitride. J. Mater. Res. 19, 1392–1399 (2004)

    Article  CAS  Google Scholar 

  5. He, H., Sekine, T., Kobayashi, T., Kimoto, K.: Phase transformation of germanium nitride (Ge3N4) under shock wave compression. J. Appl. Phys. 90, 4403–4406 (2001)

    Article  CAS  Google Scholar 

  6. Boyko, T.D., Bailey, E., Moewes, A., McMillan, P.F.: Class of tunable wide band gap semiconductors γ-(GexSi1x)3N4. Phys. Rev. B 81, 155207 (2010)

    Article  CAS  Google Scholar 

  7. Boyko, T.D., Hunt, A., Zerr, A., Moewes, A.: Electronic structure of spinel-type nitride compounds Si3N4, Ge3N4, and Sn3N4 with tuneable band gaps: application to light emitting diodes. Phys. Rev. Lett. 111, 097402 (2013)

    Article  CAS  Google Scholar 

  8. Ching, W.Y., Mo, S.D., Ouyang, L., Rulis, P., Tanaka, I., Yoshiya, M.: Theoretical prediction of the structure and properties of cubic spinel nitrides. J. Am. Ceram. Soc. 85, 75–80 (2002)

    Article  CAS  Google Scholar 

  9. Chu, I.-H., Kozhevnikov, A., Schulthess, T.C., Cheng, H.-P.: All-electron GW quasiparticle band structures of group 14 nitride compounds. J. Chem. Phys. 141, 044709 (2014)

    Article  CAS  Google Scholar 

  10. Hart, J.N., Allan, N.L., Claeyssens, F.: Ternary silicon germanium nitrides: a class of tunable band gap materials. Phys. Rev. B 84, 245209 (2011)

    Article  CAS  Google Scholar 

  11. Museur, L., Zerr, A., Kanaev, A.: Photoluminescence and electronic transitions in cubic silicon nitride. Sci. Rep. 6, 18523 (2016)

    Article  CAS  Google Scholar 

  12. Sickafus, K.E., Wills, J.M.: Structure of Spinel. J. Am. Ceram. Soc. 82, 3279–3292 (1999)

    Article  CAS  Google Scholar 

  13. Sickafus, K.E., Wills, J.M., Minervini, L., Grimes, R.W., Valdez, J.A., Ishimaru, M., Li, F., McClellan, K.J., Hartmann, T.: Radiation tolerance of complex oxides. Science 289, 748–751 (2000)

    Article  CAS  Google Scholar 

  14. Sickafus, K.E., Grimes, R.W., Valdez, J.A., Cleave, A., Tang, M., Ishimaru, M., Corish, S.M., Stanek, C.R., Uberuaga, B.P.: Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat. Mater. 6, 217–223 (2007)

    Article  CAS  Google Scholar 

  15. Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., Hausermann, D.: Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res. 14, 235–248 (1996)

    Article  Google Scholar 

  16. Feldbach, E., Tõldsepp, E., Kirm, M., Lushchik, A., Mizohata, K., Räisänen, J.: Radiation resistance diagnostics of wide-gap optical materials. Opt. Mater. 55, 164–167 (2016)

    Article  CAS  Google Scholar 

  17. Kitaura, M., Tanaka, S., Itoh, M., Ohnishi, A., Kominami, H., Hara, K.: Excitation process of Ce3+ and Eu2+ ions doped in SrGa2S4 crystals under the condition of multiplication of electronic excitations. J. Luminescence 172, 243–248 (2016)

    Article  CAS  Google Scholar 

  18. Accelrys Software. Material Studio Release Notes, Release 6.1, San Diego (2012)

  19. Leinenweber, K., O’Keeffe, M., Somayazulu, M., Hubert, H., McMillan, P.F., Wolf, G.H.: Synthesis and structure refinement of the spinel, γ-Ge3N4. Chem. Eur. J. 5, 3076–3078 (1999)

    Article  CAS  Google Scholar 

  20. Deb, S.K., Dong, J., Hubert, H., McMillan, P.F., Sankey, O.F.: The Raman spectra of the hexagonal and cubic (spinel) forms of Ge3N4: an experimental and theoretical study. Solid State Commun. 114, 137–142 (2000)

    Article  CAS  Google Scholar 

  21. Dong, J., Sankey, O.F., Deb, S.K., Wolf, G., McMillan, P.F.: Theoretical study of b-Ge3N4 and its high-pressure spinel g phase. Phys. Rev. B 61, 11979 (2000)

    Article  CAS  Google Scholar 

  22. Soignard, E., McMillan, P.F.: Raman spectroscopy of γ-Si3N4 and γ-Ge3N4 nitride spinel phases formed at high pressure and high temperature: Evidence for defect formation in nitride spinels. Chem. Mater. 16, 3533–3542 (2004)

    Article  CAS  Google Scholar 

  23. Museur, L., Feldbach, E., Kanaev, A.: Defect related luminescence of hexagonal boron nitride. Phys. Rev. B 78, 155204 (2008)

    Article  CAS  Google Scholar 

  24. Toyozawa, Y.: Electron induced lattice relaxation and defect reactions. Physica 116B, 7–17 (1983)

    Google Scholar 

  25. Fel’dbach, ÉKh., Lushchik, Ch.B., Kuusmann, I.L.: Coexistence of large- and small-radius excitons bound on defects in solids. JETP Lett. 39, 61–64 (1984)

    Google Scholar 

  26. Nakahara, J., Kobayachi, K.: Edge emissions and broad-band emissions in thallous halides. J. Phys. Soc. Jap. 40, 180–188 (1976)

    Article  CAS  Google Scholar 

  27. Takahei, K., Kobayashi, K.: Impurity-induced self-trapping of holes and minority-ion percolation in TlCl-TlBr mixed crystals. J. Phys. Soc. Jpn. 44, 1850–1860 (1978)

    Article  CAS  Google Scholar 

  28. Feldbach, E., Kudryavtseva, I., Mizohata, K., Prieditis, G., Räisänen, J., Shablonin, E., Lushchik, A.: Optical characteristics of virgin and proton-irradiated ceramics of magnesium aluminate spinel. Opt. Mater. 96, 109308 (2019)

    Article  CAS  Google Scholar 

  29. Krukau, A.V., Vydrov, O.A., Izmaylov, A.F., Scuseria, G.E.: Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006)

    Article  CAS  Google Scholar 

  30. Gao, S.-P., Xu, G.C.Y.: Band structures for Ge3N4 polymorphs studied by DFT-LDA and GWA. Comput. Mater. Sci. 67, 292–295 (2013)

    Article  CAS  Google Scholar 

  31. Jayatunga, B.H.D., Lambrecht, W.R.L.: Quasiparticle self-consistent GW energy band calculations for Ge3N4 phases. Phys. Rev. B 102, 195203 (2020)

    Article  CAS  Google Scholar 

  32. Liu, Z., Liu, Y., Li, D., Wei, S., Wu, G., Tian, F., Bao, K., Duan, D., Yu, H., Liu, B., Cui, T.: Insights into antibonding induced energy density enhancement and exotic electronic properties for germanium nitrides at modest pressures. Inorg. Chem. 57, 10416–10423 (2018)

    Article  CAS  Google Scholar 

  33. Mulliken, R.S.: Electronic population analysis on LCAOMO molecular wave functions. J. Chem. Phys. 23, 1833–1840 (1955)

    Article  CAS  Google Scholar 

  34. Braun, C.L.: Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. J. Chem. Phys. 80, 4157–4161 (1984)

    Article  CAS  Google Scholar 

  35. Caskey, C.M., Seabold, J.A., Stevanovic, V., Ma, M., Smith, W.A., Ginley, D.S., Neale, N.R., Richards, R.M., Lany, S., Zakutayev, A.: Semiconducting properties of spinel tin nitride and other IV3N4 polymorphs. J. Mater. Chemistry C 3, 1389–1396 (2015)

    Article  CAS  Google Scholar 

  36. Viswanath, A.K., Lee, J.I., Kim, D., Lee, C.R., Leem, J.Y.: Exciton-phonon interactions, exciton binding energy, and their importance in the realization of room-temperature semiconductor lasers based on GaN. Phys. Rev. B 58, 16333–16339 (1998)

    Article  CAS  Google Scholar 

  37. Bougrov, V., Levinshtein, M.E., Rumyantsev, S.L., Zubrilov, A.: Galium nitride (GaN). In: Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S. (eds.) Properties of advanced semiconductor materials GaN, AlN, InN, BN, SiC, SiGe, pp. 1–30. Wiley, NY (2001)

    Google Scholar 

  38. Hanada, T.: Basic properties of ZnO, GaN, and related materials. In: Yao, T., Hong, S.K. (eds.) Oxide and nitride semiconductors, pp. 1–19. Springer, Heidelberg (2009)

    Google Scholar 

  39. Bunea, G.E., Herzog, W.D., Ünlü, M.S., Goldberg, B.B., Molnar, R.J.: Time-resolved photoluminescence studies of free and donor-bound exciton in GaN grown by hydride vapor phase epitaxy. Appl. Phys. Lett. 75, 838–840 (1999)

    Article  CAS  Google Scholar 

  40. Lima, R.S., Dionisio, P.H., Schreiner, W.H., Achete, C.: Magnetron sputtered tin nitride. Solid State Commun. 79, 395–398 (1991)

    Article  CAS  Google Scholar 

  41. Maruyama, T., Morishita, T.: Tin nitride thin films prepared by radio-frequency reactive sputtering. J. Appl. Phys. 77, 6641–6645 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Support from Estonian Research Council grant PUT PRG 619 is gratefully acknowledged. The multi-anvil experiments at LMV were supported by the French Government Laboratory of Excellence initiative no ANR-10-LABX-0006, the Région Auvergne and the European Regional Development Fund (ClerVolc Contribution Number 478).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Kanaev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldbach, E., Zerr, A., Museur, L. et al. Electronic Band Transitions in γ-Ge3N4. Electron. Mater. Lett. 17, 315–323 (2021). https://doi.org/10.1007/s13391-021-00291-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00291-y

Keywords

Navigation