Skip to main content

Advertisement

Log in

Inequalities for n-class of functions using the Saigo fractional integral operator

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

The role of fractional integral operators can be found as one of the best ways to generalize the classical inequalities. In this paper, we use the Saigo fractional integral operator to produce some inequalities for a class of n-decreasing positive functions. The results are more general than the available classical results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, B., Ntouyas, S.K., Tariboon, J., Alsaedi, A.: A study of nonlinear fractional-order boundary value problem with nonlocal Erdélyi–Kober and generalized Riemann–Liouville type integral boundary conditions. Math. Model. Anal. 22(2), 121–139 (2017)

    Article  MathSciNet  Google Scholar 

  2. Jafari, H., Jassim, H.K., Moshokoa, S.P., Ariyan, V.M., Tchier, F.: Reduced differential transform method for partial differential equations within local fractional derivative operators. Adv. Mech. Eng. 8(4), 1–6 (2016)

    Article  Google Scholar 

  3. Jafari, H., Jassim, H.K., Tchier, F., Baleanu, D.: On the approximate solutions of local fractional differential equations with local fractional operators. Entropy 18(4), 150 (2016). https://doi.org/10.3390/e18040150

    Article  Google Scholar 

  4. Khan, H., Sun, H., Chen, W., Baleanu, D.: Inequalities for new class of fractional integral operators. J. Nonlinear Sci. Appl. 10, 6166 (2017). (in press)

    Article  MathSciNet  Google Scholar 

  5. Sun, H.G., Zhang, Y., Chen, W., Reeves, D.M.: Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. J. Contam. Hydrol. 157, 47–58 (2014)

    Article  Google Scholar 

  6. Baleanu, D., Khan, H., Jafari, H., Khan, R.A., Alipour, M.: On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions. Adv. Differ. Equ. 318, 14 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Baleanu, D., Mustafa, O.G.: On the global existence of solutions to a class of fractional differential equations. Comput. Math. Appl. 59(5), 1835–1841 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baleanua, D., Mustafa, O.G., Agarwal, R.P.: An existence result for a superlinear fractional differential equation. Appl. Math. Lett. 23(9), 1129–1132 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baleanu, D., Mustafa, O.G., Agarwal, R.P.: On the solution set for a class of sequential fractional differential equations. J. Phys. A 43(38), 7 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baleanu, D., Agarwal, R.P., Khan, H., Khan, R.A., Jafari, H.: On the existence of solution for fractional differential equations of order 3 < δ 1 ≤ 4. Adv. Differ. Equ. 362, 9 (2015)

    MATH  Google Scholar 

  11. Baleanu, D., Agarwal, R.P., Mohammadi, H., Rezapour, S.: Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces. Bound. Value Probl. 112, 1–8 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Hilfer, R.: Applications of fractional calculus in physics. World Scientific Publishing Co, Inc., River Edge (2000)

    Book  MATH  Google Scholar 

  13. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives. In: Nikolʹskiĭ, S.M. (ed.) Theory and applications. Gordon and Breach Science Publishers, Yverdon (1993). (Translated from the 1987 Russian original. Revised by the authors)

    Google Scholar 

  14. Jleli, M., O’Regan, D.O., Samet, B.: On Hermite–Hadamard type inequalities via generalized fractional integrals. Turk. J. Math. 40(6), 1221–1230 (2016)

    Article  MathSciNet  Google Scholar 

  15. Jleli, M., Kirane, M., Samet, B.: Hartman–Wintner-type inequality for a fractional boundary value problem via a fractional derivative with respect to another function. Discrete Dyn. Nat. Soc. 5123240, 8 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Set, E., Noor, M.A., Awan, M.U., Gözpinar, A.: Generalized Hermite–Hadamard type inequalities involving fractional integral operators. J. Inequal. Appl. 169, 10 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Agarwal, P., Jleli, M., Tomar, M.: Certain Hermite–Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 55, 10 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Sarikaya, M.Z., Budak, H.: Generalized Ostrowski type inequalities for local fractional integrals. Proc. Am. Math. Soc. 145(4), 1527–1538 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Aldhaifallah, M., Tomar, M., Nisar, K.S., Purohit, S.D.: Some new inequalities for (k, s)-fractional integrals. J. Nonlinear Sci. Appl. 9(9), 5374–5381 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Agarwal, R.P., Ozbekler, A.: Lyapunov type inequalities for mixed nonlinear Riemann–Liouville fractional differential equations with a forcing term. J. Comput. Appl. Math. 314, 69–78 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, W., Ngo, Q.A., Huy, V.N.: Several interesting integral inequalities. J. Math. Inequal. 3(2), 201–212 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. O’Regan, D., Samet, B.: Lyapunov-type inequalities for a class of fractional differential equations. J. Inequal. Appl. 247, 10 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Yang, X., Lo, K.: Lyapunov-type inequality for a class of even-order differential equations. Appl. Math. Comput. 215(11), 3884–3890 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Ali, A., Rabiei, F., Shah, K.: On Ulam’s type stability for a class of impulsive fractional differential equations with nonlinear integral boundary conditions. J. Nonlinear Sci. Appl. 10, 4760–4775 (2017)

    Article  MathSciNet  Google Scholar 

  25. Podlubny, I.: Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in science and engineering, vol. 198. Academic Press, Inc., San Diego (1999)

    MATH  Google Scholar 

  26. Saigo, M.: A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Kyushu Univ. 11(2), 135–143 (1977)

    MathSciNet  Google Scholar 

  27. Set, E., Choi, J., Gözpinar, A.: Hermite–Hadamard type inequalities for the generalized k-fractional integral operators. J. Inequal. Appl. 2017(1), 206 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Agahi, H., Ouyang, Y., Mesiar, R., Pap, E., Štrboja, M.: Hölder and Minkowski type inequalities for pseudo-integral. Appl. Math. Comput. 217(21), 8630–8639 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Matkowski, J.: Converse theorem for the Minkowski inequality. J. Math. Anal. Appl. 348(1), 315–323 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Serre, D.: The reverse Hlawka inequality in a Minkowski space. C. R. Math. 353(7), 629–633 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn–Minkowski inequality. Adv. Math. 231(3–4), 1974–1997 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hasib, K., Tunç, C., Alkhazan, A., Ameen, B., Khan, A.: A generalization of Minkowski’s inequality by Hahn integral operator. J. Taibah Univ. Sci. 12(5), 506–513 (2018)

    Article  Google Scholar 

  33. Bolandtalat, A., Babolian, E., Jafari, H.: Numerical solutions of multi-order fractional differential equations by Boubaker polynomials. Open Phys. 14, 226–230 (2016)

    Article  Google Scholar 

  34. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. North-Holland mathematics studies, vol. 204. Elsevier Science B.V., Amsterdam (2006)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the anonymous reviewers for their valuable comments which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equal contribution in this article.

Corresponding author

Correspondence to Cemil Tunç.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Tunç, C., Baleanu, D. et al. Inequalities for n-class of functions using the Saigo fractional integral operator. RACSAM 113, 2407–2420 (2019). https://doi.org/10.1007/s13398-019-00624-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-019-00624-5

Keywords

Mathematics Subject Classification

Navigation