Skip to main content

Advertisement

Log in

Exergy-based comparison of indirect and direct biomass gasification technologies within the framework of bio-SNG production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Atmospheric indirect steam-blown and pressurised direct oxygen-blown gasification are the two major technologies discussed for large-scale production of synthetic natural gas from biomass (bio-SNG) by thermochemical conversion. Published system studies of bio-SNG production concepts draw different conclusions about which gasification technology performs best. In this paper, an exergy-based comparison of the two gasification technologies is performed using a simplified gasification reactor model. This approach aims at comparing the two technologies on a common basis without possible bias due to model regression on specific reactor data. The system boundaries include the gasification and gas cleaning step to generate a product gas ready for subsequent synthesis. The major parameter investigated is the delivery pressure of the product gas. Other model parameters include the air-to-fuel ratio for gasification as well as the H2/CO ratio in the product gas. In order to illustrate the thermodynamic limits and sources of efficiency loss, an ideal modelling approach is contrasted with a model accounting for losses in, e.g. the heat recovery and compression operations. The resulting cold-gas efficiencies of the processes are in the range of 0.66–0.84 on a lower heating value basis. Exergy efficiencies for the ideal systems are from 0.79 to 0.84 and in the range of 0.7 to 0.79 for the systems including losses. Pressurised direct gasification benefits from higher delivery pressure of the finished gas product and results in the highest exergy efficiency values. Regarding bio-SNG synthesis however, a higher energetic and exergetic penalty for CO2 removal results in direct gasification exergy efficiency values that are below values for indirect gasification. No significant difference in performance between the technologies can be observed based on the model results, but a challenge identified for process design is efficient heat recovery and cogeneration of electricity for both technologies. Furthermore, direct gasification performance is penalised by incomplete carbon conversion in contrast to performance of indirect gasification concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ASU:

Air-separation unit

e :

Specific exergy (mass)

\( \overset{\cdot }{E} \) :

Exergy flow

HHV:

Higher heating value

LHV:

Lower heating value

\( \overset{\cdot }{m} \) :

Mass flow

M :

Molar mass

P :

Pressure

R :

Gas constant

T :

Temperature

w :

Specific work

\( \overset{\cdot }{W} \) :

Work flow/power

λ :

Relative air-to-fuel ratio

η :

Efficiency

φ :

Effective solid volume fraction

ρ :

Density

Π:

Compression ratio

air:

Air

biomass:

Biomass

cg:

Cold gas

ASU:

Air separation unit

CO2 :

CO2

CO2sep:

CO2 separation

comp:

Compressor

DH:

District heat

el:

Electricity

ex:

Exergetic

f:

Feed

fuel:

Fuel

gasif:

Gasification

ideal:

Ideal system

inert:

Inert gas (CO2)

intcool:

Intercooling

is:

Isentropic

loss:

Accounting for losses

loss CO2 :

Accounting for losses and CO2 separation penalty

pg:

Product gas

pump:

Pump

screw:

Screw feeder

steam:

Steam

References

  1. Gunnarsson I (2011) The GoBiGas Project. In: International Seminar on Gasification 2011—Gas Quality, CHP and New Concepts, Malmö, Sweden, 6–7 October 2011

  2. Fredriksson Möller B (2011) The E.ON Bio2G Project. In: International Seminar on Gasification 2011—Gas Quality, CHP and New Concepts, Malmö, Sweden, 6–7 October 2011

  3. Adelt M, Vogel A (2010) Bio-SNG—prospective renewable energy carrier in the E.ON gas grid (in German: bio-SNG zukünftiger regenerativer Energiträger im E.ON Gasnetz). Erdöl Erdgas Kohle 126(10):338–341

    Google Scholar 

  4. Hennius M (2012) E.ON delays large-scale biogas project in Scania (In Swedish: E.ON avvaktar med storskaligt biogasprojekt i Skåne). Press release. E.ON Sverige AB, Malmö

  5. Hamelinck CN, Faaij APC (2006) Outlook for advanced biofuels. Energy Policy 34(17):3268–3283. doi:10.1016/j.enpol.2005.06.012

    Article  Google Scholar 

  6. van der Meijden CM, Veringa HJ, Rabou LPLM (2010) The production of synthetic natural gas (SNG): a comparison of three wood gasification systems for energy balance and overall efficiency. Biomass Bioenergy 34(3):302–311. doi:10.1016/j.biombioe.2009.11.001

    Article  Google Scholar 

  7. Gassner M, Maréchal F (2012) Thermo-economic optimisation of the polygeneration of synthetic natural gas (SNG), power and heat from lignocellulosic biomass by gasification and methanation. Energy and Environmental Science 5(2):5768–5789. doi:10.1039/c1ee02867g

    Article  Google Scholar 

  8. Gassner M, Maréchal F (2009) Thermo-economic process model for thermochemical production of synthetic natural gas (SNG) from lignocellulosic biomass. Biomass Bioenergy 33(11):1587–1604. doi:10.1016/j.biombioe.2009.08.004

    Article  Google Scholar 

  9. Rönsch S, Kaltschmitt M (2012) Bio-SNG production—concepts and their assessment. Biomass Conversion and Biorefinery 2(4):285–296. doi:10.1007/s13399-012-0048-0

    Article  Google Scholar 

  10. Karellas S, Panopoulos KD, Panousis G, Rigas A, Karl J, Kakaras E (2012) An evaluation of substitute natural gas production from different coal gasification processes based on modeling. Energy 45(1):183–194. doi:10.1016/j.energy.2012.03.075

    Article  Google Scholar 

  11. Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81(8):1051–1063. doi:10.1016/S0016-2361(01)00131-4

    Article  Google Scholar 

  12. Szargut J, Morris DR, Steward FR (1988) Exergy analysis of thermal, chemical, and metallurgical processes. Hemisphere, New York

    Google Scholar 

  13. Schuster G, Loffler G, Weigl K, Hofbauer H (2001) Biomass steam gasification—an extensive parametric modeling study. Bioresour Technol 77(1):71–79. doi:10.1016/S0960-8524(00)00115-2

    Article  Google Scholar 

  14. Kopyscinski J, Schildhauer TJ, Biollaz SMA (2010) Production of synthetic natural gas (SNG) from coal and dry biomass—a technology review from 1950 to 2009. Fuel 89(8):1763–1783. doi:10.1016/j.fuel.2010.01.027

    Article  Google Scholar 

  15. Friedrichs G, Proplesch P, Lommerzheim W (1982) Comflux pilot plant for converting coal conversion gas into SNG. Gaswärme International 31(6):261–264

    Google Scholar 

  16. Seemann M (2006) Methanation of biosyngas in a fluidized bed reactor. Ph.D. thesis, Swiss Federal Institute of Technology, Zürich, Switzerland

  17. Hannula I, Kurkela E (2012) A parametric modelling study for pressurised steam/O2-blown fluidised-bed gasification of wood with catalytic reforming. Biomass Bioenergy 38:58–67. doi:10.1016/j.biombioe.2011.02.045

    Article  Google Scholar 

  18. Siedlecki M, de Jong W (2011) Biomass gasification as the first hot step in clean syngas production process—gas quality optimization and primary tar reduction measures in a 100 kW thermal input steam-oxygen blown CFB gasifier. Biomass Bioenergy 35(suppl 1):S40–S62. doi:10.1016/j.biombioe.2011.05.033

  19. Kitzler H, Pfeifer C, Hofbauer H (2011) Pressurized gasification of woody biomass—variation of parameter. Fuel Process Technol 92(5):908–914. doi:10.1016/j.fuproc.2010.12.009

    Article  Google Scholar 

  20. Puchner B, Pfeifer C, Hofbauer H (2009) Bed material and parameter variation for a pressurized biomass fluidized bed process. In: Yue G, Zhang H, Zhao C, Luo Z (eds) Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xian, China, 18–21 May 2009. Tsinghua University Press, Beijing, pp 700–705. doi:10.1007/978-3-642-02682-9_108

  21. Valin S, Ravel S, Guillaudeau J, Thiery S (2010) Comprehensive study of the influence of total pressure on products yields in fluidized bed gasification of wood sawdust. Fuel Process Technol 91(10):1222–1228. doi:10.1016/j.fuproc.2010.04.001

    Article  Google Scholar 

  22. Lind F, Israelsson M, Seemann M, Thunman H (2012) Manganese oxide as catalyst for tar cleaning of biomass-derived gas. Biomass Conversion and Biorefinery 2(2):133–140. doi:10.1007/s13399-012-0042-6

    Article  Google Scholar 

  23. Zwart RWR, Van Der Drift A, Bos A, Visser HJM, Cieplik MK, Könemann HWJ (2009) Oil-based gas washing-flexible tar removal for high-efficient production of clean heat and power as well as sustainable fuels and chemicals. Environmental Progress and Sustainable Energy 28(3):324–335. doi:10.1002/ep.10383

    Article  Google Scholar 

  24. Pröll T, Aichernig C, Rauch R, Hofbauer H (2007) Fluidized bed steam gasification of solid biomass—performance characteristics of an 8 MWth combined heat and power plant. Int J Chem React Eng 5:54. doi:10.2202/1542-6580.1398

    Google Scholar 

  25. Lind F, Seemann M, Thunman H (2011) Continuous catalytic tar reforming of biomass derived raw gas with simultaneous catalyst regeneration. Ind Eng Chem Res 50(20):11553–11562. doi:10.1021/ie200645s

    Article  Google Scholar 

  26. Pfeifer C, Hofbauer H (2008) Development of catalytic tar decomposition downstream from a dual fluidized bed biomass steam gasifier. Powder Technol 180(1–2):9–16. doi:10.1016/j.powtec.2007.03.008

    Article  Google Scholar 

  27. Brodén H, Nyström O, Jönsson M (2012) Optimum power yield for bio fuel fired combined heat and power plants (In Swedish: optimal elverkningsgrad för biobränsleeldade kraftvärmeverk). Värmeforsk, Stockholm

    Google Scholar 

  28. Dai J, Cui H, Grace JR (2012) Biomass feeding for thermochemical reactors. Prog Energy Combust Sci 38(5):716–736. doi:10.1016/j.pecs.2012.04.002

    Article  Google Scholar 

  29. Cummer KR, Brown RC (2002) Ancillary equipment for biomass gasification. Biomass Bioenergy 23(2):113–128. doi:10.1016/S0961-9534(02)00038-7

    Article  Google Scholar 

  30. Swanson ML, Musich MA, Schmidt DD, Schultz JK (2003) Feed system innovation for gasification locally economical alternative fuels (FIGLEAF). U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh

    Book  Google Scholar 

  31. Jones D, Bhattacharyya D, Turton R, Zitney SE (2011) Optimal design and integration of an air separation unit (ASU) for an integrated gasification combined cycle (IGCC) power plant with CO2 capture. Fuel Process Technol 92(9):1685–1695. doi:10.1016/j.fuproc.2011.04.018

    Article  Google Scholar 

  32. Beysel G (2009) Enhanced cryogenic air separation—a proven process applied to oxyfuel: future prospects. In: 1st International Oxyfuel Combustion Conference, Cottbus, Germany, 8–11 September 2009

  33. Tranier J-P, Dubettier R, Perrin N (2009) Air separation unit for oxy-coal combustion systems. Paper presented at the 1st International Oxyfuel Combustion Conference, Cottbus, Germany

  34. Aspen Engineering Suite V7.2 (2010). Aspen Technology Inc.

  35. Edberg U, Engstrom L, Hartler N (1973) The influence of chip dimensions on chip bulk density. Svensk Papperstidning 14:529–533

    Google Scholar 

  36. Plötze M, Niemz P (2011) Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry. European Journal of Wood and Wood Products 69(4):649–657. doi:10.1007/s00107-010-0504-0

    Article  Google Scholar 

  37. Screw conveyor speed calculation. (2013) Bulk Handling Global Pty Ltd. http://www.bulksolidsflow.com/free_programs/screw_conveyor_design/screw_conveyor_design.html. 28 Accessed February 2013

  38. Rautalin A, Wilén C (1992) Feeding biomass into pressure and related safety engineering. VTT Research Notes 1428. VTT—Technical Research Centre of Finland, Espoo

  39. Götz M, Köppel W, Reimert R, Graf F (2012) Potential to optimize scrubbers for biogas cleaning. Part 2. Chemical Scrubbers (in German; Optimierungspotenzial von Wäschen zur Biogasaufbereitung Teil 2. Chemische Wäschen). Chemie Ingenieur Technik 84(1–2):81–87. doi:10.1002/cite.201100129

    Article  Google Scholar 

  40. Stecco SS, Manfrida G (1986) Exergy analysis of compression and expansion processes. Energy 11 (6):573–577. doi:10.1016/0360-5442(86)90105-2

    Google Scholar 

  41. Tock L, Gassner M, Maréchal F (2010) Thermochemical production of liquid fuels from biomass: thermo-economic modeling, process design and process integration analysis. Biomass Bioenergy 34(12):1838–1854

    Article  Google Scholar 

  42. Gassner M, Maréchal F (2008) Thermo-economic optimisation of the integration of electrolysis in synthetic natural gas production from wood. Energy 33(2):189–198. doi:10.1016/j.energy.2007.09.010

    Article  Google Scholar 

  43. Heyne S, Thunman H, Harvey S (2012) Extending existing combined heat and power plants for synthetic natural gas production. International Journal of Energy Research 36(5):670–681. doi:10.1002/er.1828

    Article  Google Scholar 

  44. Panek JM, Grasser J (2006) Practical experience gained during the first twenty years of operation of the great plains gasification plant and implications for future projects. US Department of Energy-Office of Fossil Energy, Washington

    Google Scholar 

  45. Heberlein J, Murphy AB (2008) Thermal plasma waste treatment. J Phys D-Appl Phys 41 (5). doi:10.1088/0022-3727/41/5/053001

  46. Hofbauer H, Rauch R, Loeffler G, Kaiser S, Fercher E, Tremmel H (2002) Six years experience with the FICFB-gasification process. In: 12th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Amsterdam, Netherlands, 17–21 June 2002

  47. Dutta A, Talmadge M, Hensley J, Worley M, Dudgeon D, Barton D, Gronendijk P, Ferrari D, Stears B, Searcy EM, Wright CT, Hess JR (2011) Process design and economics for conversion of lignocellulosic biomass to ethanol. National Renewable Energy Laboratory, Golden

    Google Scholar 

Download references

Acknowledgements

This project was funded by the Swedish Energy Agency’s program for Energy Efficiency in Industry, Göteborg Energi’s Research Foundation, and E.ON as well as the Swedish Gasification Centre (SFC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Heyne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heyne, S., Thunman, H. & Harvey, S. Exergy-based comparison of indirect and direct biomass gasification technologies within the framework of bio-SNG production. Biomass Conv. Bioref. 3, 337–352 (2013). https://doi.org/10.1007/s13399-013-0079-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-013-0079-1

Keywords

Navigation