Skip to main content
Log in

Understanding the influence of biomass particle size and reaction medium on the formation pathways of hydrochar

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The chemical-physical processes controlling hydrothermal carbonization (HTC) are still not completely understood. This paper focuses on two aspects: the influence on the hydrochar formation of the particle size of the feedstock and the presence of solved compounds in the feedwater. To address these, brewer’s spent grains were crushed to < 1 mm and separated in three fractions. In addition, residual process water (rPW) from 5-hydroxymethylfurfural (HMF) production instead of bi-distilled H2O was added in a series of experiments for recycling. The results show a transfer limitation of hydrolysis products through pores for the particle size fractions > 250 μm proved by HPLC analysis of liquid byproducts, particularly when rPW, containing readily condensable/polymerizable intermediates, is added. This has a positive effect on the yield and carbon content of the hydrochars caused mainly by an increase in its secondary char fraction. The reaction pathways involved are discussed in detail.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

HTC:

Hydrothermal carbonization

HC:

Hydrochar

HMF:

5-hydroxymethylfurfural

C eff :

Carbon retention efficiency

rPW:

Residual process water

FRU:

Fructose

BSG:

Brewer’s spent grains

PW:

Process water

C fix :

Fixed carbon

VM:

Volatile matter

LA:

Levulinic acid

FA:

Formic acid

AA:

Acetic acid

LaA:

Lactic acid

GA:

Glycolic acid

MF:

Methylfurfural

FU:

Furfural

DOC:

Dissolved organic carbon

NDF:

Neutral detergent fiber,

ADF:

Acid detergent fiber

ADL:

Acid detergent lignin

PG:

Process gas

SUC:

Sucrose

GLU:

Glucose

FRU:

Fructose

GIAD:

Glyceraldehyde

GAD:

Glycolaldehyde

PA:

Pyruvic acid

DHA:

Dihydroxyacetone

XYL:

Xylose

ARA:

Arabinose

BDL:

Below detection limit

FAD:

Formaldehyde

BTO:

1,2,4-benzenetriol

EtOH:

Ethanol

DHH:

2,5-dioxo-6-hydroxy-hexanal

ERY:

Erythrose

FUA:

Furfuryl-alcohol

MeOH:

Methanol

AAD:

Acetaldehyde

MAN:

Mannose

OA:

Oxalic acid

PAD:

Pyruvaldehyde

ProA:

Propionic acid

ProeA:

Propenoic acid

References

  1. Kruse A, Dahmen N (2018) Hydrothermal biomass conversion: Quo vadis? J Supercrit Fluids 134:114–123

    Google Scholar 

  2. Kim D, Yoshikawa K, Park K (2015) Characteristics of biochar obtained by hydrothermal carbonization of cellulose for renewable energy. Energies 8(12):14040–14048

    Google Scholar 

  3. Lynam JG, Reza MT, Yan W, Vásquez VR, Coronella CJ (2015) Hydrothermal carbonization of various lignocellulosic biomass. Biomass Conv Bioref 5(2):173–181

    Google Scholar 

  4. Sharples A (1957) The hydrolysis of cellulose and its relation to structure. Trans Faraday Soc 53:1003

    Google Scholar 

  5. Vos KD, Burris FO, Riley RL (1966) Kinetic study of the hydrolysis of cellulose acetate in the pH range of 2–10. J Appl Polym Sci 10(5):825–832

    Google Scholar 

  6. Tolonen LK, Zuckerstätter G, Penttilä PA, Milacher W, Habicht W, Serimaa R et al (2011) Structural changes in microcrystalline cellulose in subcritical water treatment. Biomacromolecules 12(7):2544–2551

    Google Scholar 

  7. García-Bordejé E, Pires E, Fraile JM (2017) Parametric study of the hydrothermal carbonization of cellulose and effect of acidic conditions. Carbon 123:421–432

    Google Scholar 

  8. Baugh KD, McCarty PL (1988) Thermochemical pretreatment of lignocellulose to enhance methane fermentation: I. Monosaccharide and furfurals hydrothermal decomposition and product formation rates. Biotechnol Bioeng 31(1):50–61

    Google Scholar 

  9. Qi Y, Song B, Qi Y (2016) The roles of formic acid and levulinic acid on the formation and growth of carbonaceous spheres by hydrothermal carbonization. RSC Adv 6(104):102428–102435

    Google Scholar 

  10. Sumerskii IV, Krutov SM, Zarubin MY (2010) Humin-like substances formed under the conditions of industrial hydrolysis of wood. Russ J Appl Chem 83(2):320–327

    Google Scholar 

  11. Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem Eur J 15(16):4195–4203

    Google Scholar 

  12. Steinbach D, Kruse A, Sauer J (2017) Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production- a review. Biomass Conv Bioref 7(2):247–274

    Google Scholar 

  13. Luo S, Zhou Y, Yi C, Luo Y, Fu J (2014) Influence of the feed moisture, rotor speed, and blades gap on the performances of a biomass pulverization technology. TheScientificWorldJournal 2014:435816

    Google Scholar 

  14. Cocero MJ, Cabeza Á, Abad N, Adamovic T, Vaquerizo L, Martínez CM, Pazo-Cepeda MV (2018) Understanding biomass fractionation in subcritical & supercritical water. J Supercrit Fluids 133:550–565

    Google Scholar 

  15. van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113(3):1499–1597

    Google Scholar 

  16. Rapp KM Process for preparing pure 5-hydroxymethylfurfuraldehyde: United States patent

  17. van Zandvoort I, Wang Y, Rasrendra CB, Van Eck ERH, Bruijnincx PCA, Heeres HJ et al (2013) Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6(9):1745–1758

    Google Scholar 

  18. Kambo HS, Minaret J, Dutta A (2018) Process water from the hydrothermal carbonization of biomass: a waste or a valuable product? Waste Biomass Valor 9(7):1181–1189

    Google Scholar 

  19. Tsilomelekis G, Orella MJ, Lin Z, Cheng Z, Zheng W, Nikolakis V, Vlachos DG (2016) Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins. Green Chem 18(7):1983–1993

    Google Scholar 

  20. Reiche S, Kowalew N, Schlögl R (2015) Influence of synthesis pH and oxidative strength of the catalyzing acid on the morphology and chemical structure of hydrothermal carbon. Chemphyschem 16(3):579–587

    Google Scholar 

  21. Uddin MH, Reza MT, Lynam JG, Coronella CJ (2013) Effects of water recycling in hydrothermal carbonization of loblolly pine. Environ Prog Sustain Energy 34:n/a-n/a

    Google Scholar 

  22. Stemann J, Putschew A, Ziegler F (2013) Hydrothermal carbonization: process water characterization and effects of water recirculation. Bioresour Technol 143:139–146

    Google Scholar 

  23. Kabadayi Catalkopru A, Kantarli IC, Yanik J (2017) Effects of spent liquor recirculation in hydrothermal carbonization. Bioresour Technol 226:89–93

    Google Scholar 

  24. Weiner B, Poerschmann J, Wedwitschka H, Koehler R, Kopinke F-D (2014) Influence of process water reuse on the hydrothermal carbonization of paper. ACS Sustain Chem Eng 2(9):2165–2171

    Google Scholar 

  25. Poerschmann J, Weiner B, Koehler R, Kopinke F-D (2015) Organic breakdown products resulting from hydrothermal carbonization of brewer’s spent grain. Chemosphere 131:71–77

    Google Scholar 

  26. Kruse A, Badoux F, Grandl R, Wüst D (2012) Hydrothermale Karbonisierung: 2. Kinetik der Biertreber-Umwandlung Chemie Ingenieur Technik 84(4):509–512

    Google Scholar 

  27. Lynch KM, Steffen EJ, Arendt EK (2016) Brewers’ spent grain: a review with an emphasis on food and health. J Inst Brew 122(4):553–568

    Google Scholar 

  28. McCarthy AL, O'Callaghan YC, Piggott CO, FitzGerald RJ, O'Brien NM (2013) Brewers’ spent grain; bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: a review. Proc Nutr Soc 72(1):117–125

    Google Scholar 

  29. Robertson JA, I'Anson KJA, Treimo J, Faulds CB, Brocklehurst TF, Eijsink VGH, Waldron KW (2010) Profiling brewers’ spent grain for composition and microbial ecology at the site of production. LWT Food Sci Technol 43(6):890–896

    Google Scholar 

  30. Mussatto SI, Roberto IC (2006) Chemical characterization and liberation of pentose sugars from brewer's spent grain. J Chem Technol Biotechnol 81(3):268–274

    Google Scholar 

  31. Berge ND, Ro KS, Mao J, Flora JRV, Chappell MA, Bae S (2011) Hydrothermal carbonization of municipal waste streams. Environ Sci Technol 45(13):5696–5703

    Google Scholar 

  32. Dinjus E, Kruse A, Tröger N (2011) Hydrothermal carbonization - 1. Influence of lignin in lignocelluloses. Chem Eng Technol 34(12):2037–2043

    Google Scholar 

  33. van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597

    Google Scholar 

  34. Muthusamy N (2014) Chemical composition of brewer’s spent grains - a review. Int J Sci Environ Technol (3):2109–2112

  35. Fărcaş AC, Socaci SA, Dulf FV, Tofană M, Mudura E, Diaconeasa Z (2015) Volatile profile, fatty acids composition and total phenolics content of brewers' spent grain by-product with potential use in the development of new functional foods. J Cereal Sci 64:34–42

    Google Scholar 

  36. Poerschmann J, Weiner B, Wedwitschka H, Baskyr I, Koehler R, Kopinke F-D (2014) Characterization of biocoals and dissolved organic matter phases obtained upon hydrothermal carbonization of brewer’s spent grain. Bioresour Technol 164:162–169

    Google Scholar 

  37. Santos M, Jiménez JJ, Bartolomé B, Gómez-Cordovés C, del Nozal MJ (2003) Variability of brewer’s spent grain within a brewery. Food Chem 80(1):17–21

    Google Scholar 

  38. Hardwick WA (ed.). Handbook of Brewing; 1994

    Google Scholar 

  39. Yang H, Wang G, Ding N, Yin C, Chen Y (2016) Size-controllable synthesis of carbon spheres with assistance of metal ions. Synth Met 214:1–4

    Google Scholar 

  40. Jung D, Zimmermann M, Kruse A (2018) Hydrothermal carbonization of fructose: growth mechanism and kinetic model. ACS Sustainable Chem Eng

  41. Falco C, Baccile N, Titirici M-M (2011) Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem 13(11):3273

    Google Scholar 

  42. Chen W-H, Ye S-C, Sheen H-K (2012) Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl Energy 93:237–244

    Google Scholar 

  43. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599

    Google Scholar 

  44. Bhatty RS (1986) The potential of hull-less barley - a review. Cereal Chem 62:97–103

    Google Scholar 

  45. Fincher GB (1975) Morphology and chemical composition of barley endosperm cell walls. J Inst Brew 81(2):116–122

    Google Scholar 

  46. Krawielitzki S, Kläusli TM (2015) Modified hydrothermal carbonization process for producing biobased 5-HMF platform chemical. Ind Biotechnol 11(1):6–8

    Google Scholar 

  47. Asghari SF, Yoshida H (2006) Acid-catalyzed production of 5-hydroxymethyl furfural from d-fructose in subcritical water. Ind Eng Chem Res 45(7):2163–2173

    Google Scholar 

  48. Kritzer P (1998) Die Korrosion der Nickel-Basis-Legierung 625 unter hydrothermalen Bedingungen: Einfluss der Parameter Temperatur, Druck, pH-Wert und Anwesenheit von Sauerstoff sowie der Anionen Chlorid, Sulfat, Nitrat und Phosphat auf das Korroionsverhalten

  49. Wegertseder GmbH. Microsoft Word - TechDat.doc

  50. ARS. National Nutrient Database for Standard Reference

  51. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Bioref 4(2):160–177

    Google Scholar 

  52. Titirici M-M (ed) (2013) Sustainable carbon materials from hydrothermal processes. Wiley, Hoboken

    Google Scholar 

  53. Patil SKR, Lund CRF (2011) Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy Fuel 25(10):4745–4755

    Google Scholar 

  54. Patil SKR, Heltzel J, Lund CRF (2012) Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energy Fuel 26(8):5281–5293

    Google Scholar 

  55. Volpe M, Fiori L (2017) From olive waste to solid biofuel through hydrothermal carbonisation: the role of temperature and solid load on secondary char formation and hydrochar energy properties. J Anal Appl Pyrolysis 124:63–72

    Google Scholar 

  56. Aida TM, Sato Y, Watanabe M, Tajima K, Nonaka T, Hattori H, Arai K (2007) Dehydration of d-glucose in high temperature water at pressures up to 80MPa. J Supercrit Fluids 40(3):381–388

    Google Scholar 

  57. Möller M, Nilges P, Harnisch F, Schröder U (2011) Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation. ChemSusChem 4(5):566–579

    Google Scholar 

  58. Jin F, Zhou Z, Moriya T, Kishida H, Higashijima H, Enomoto H (2005) Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environ Sci Technol 39(6):1893–1902

    Google Scholar 

  59. Chuntanapum A, Matsumura Y (2009) Formation of tarry material from 5-HMF in subcritical and supercritical water. Ind Eng Chem Res 48(22):9837–9846

    Google Scholar 

  60. Srokol Z, Bouche A-G, van Estrik A, Strik RCJ, Maschmeyer T, Peters JA (2004) Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds. Carbohydr Res 339(10):1717–1726

    Google Scholar 

  61. Fang Y, Zeng X, Yan P, Jing Z, Jin F (2012) An acidic two-step hydrothermal process to enhance acetic acid production from carbohydrate biomass. Ind Eng Chem Res 51(12):4759–4763

    Google Scholar 

  62. Kabyemela BM, ADSCHIRI T, Malaluan RM, ARAI K (1999) Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics. Ind Eng Chem Res 38(8):2888–2895

    Google Scholar 

  63. Akgül G, Kruse A (2013) Hydrothermal disproportionation of formaldehyde at subcritical conditions. J Supercrit Fluids 73:43–50

    Google Scholar 

  64. Koido K, Ishida Y, Kumabe K, Matsumoto K, Hasegawa T (2010) Kinetics of ethanol oxidation in subcritical water. J Supercrit Fluids 55(1):246–251

    Google Scholar 

  65. Aydıncak K, Yumak T, Sınağ A, Esen B (2012) Synthesis and characterization of carbonaceous materials from saccharides (glucose and lactose) and two waste biomasses by hydrothermal carbonization. Ind Eng Chem Res 51(26):9145–9152

    Google Scholar 

  66. Girisuta B, Janssen LPBM, Heeres HJ (2006) A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem 8(8):701

    Google Scholar 

  67. Gökkaya DS, Sağlam M, Yüksel M, Madenoğlu TG, Ballice L (2016) Characterization of products evolved from supercritical water gasification of xylose (principal sugar in hemicellulose). Energy Sources Part A 38(11):1503–1511

    Google Scholar 

  68. Karagöz S, Bhaskar T, MUTO A, SAKATA Y (2005) Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel 84(7–8):875–884

    Google Scholar 

  69. Peterson AA, Vogel F, Lachance RP, Fröling M, Antal JMJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1(1):32

    Google Scholar 

  70. Yang L, Tsilomelekis G, Caratzoulas S, Vlachos DG (2015) Mechanism of Brønsted acid-catalyzed glucose dehydration. ChemSusChem 8(8):1334–1341

    Google Scholar 

  71. Zhuang X, Zhan H, Song Y, He C, Huang Y, Yin X, Wu C (2019) Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC). Fuel 236:960–974

    Google Scholar 

  72. Ryu J, Suh Y-W, Suh DJ, Ahn, Dong JA (2010) Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon 48(7):1990–1998

    Google Scholar 

  73. Koch H, Pein J (1985) Condensation reactions between phenol, formaldehyde and 5-hydroxymethylfurfural, formed as intermediate in the acid catalyzed dehydration of starchy products. Polym Bull 13:525–532

    Google Scholar 

  74. Lucian M, Volpe M, Fiori L (2019) Hydrothermal carbonization kinetics of lignocellulosic agro-wastes: experimental data and modeling. Energies 12(3):516

    Google Scholar 

  75. Dussan K, Girisuta B, Lopes M, Leahy JJ, Hayes MHB (2015) Conversion of hemicellulose sugars catalyzed by formic acid: kinetics of the dehydration of D-xylose, L-arabinose, and D-glucose. ChemSusChem 8(8):1411–1428

    Google Scholar 

  76. Poerschmann J, Weiner B, Koehler R, Kopinke F-D (2017) Hydrothermal carbonization of glucose, fructose, and xylose—identification of organic products with medium molecular masses. ACS Sustain Chem Eng 5(8):6420–6428

    Google Scholar 

  77. van Dam HE, Kieboom APG, van Bekkum H (1986) The conversion of fructose and glucose in acidic media: formation of hydroxymethylfurfural. Starch/Stärke 38(3):95–101

    Google Scholar 

  78. Cottier L, Descotes G. 5-Hydroxymethylfurfural syntheses and chemical transformations 1991(2):233–248

  79. Speck JC The Lobry De Bruyn-Alberda Van Ekenstein Transformation 13:63–103

  80. Kuster BFM, Temmink HMG (1977) The influence of ph and weak-acid anions on the dehydration of d-fructose. Carbohydr Res 54:185–191

    Google Scholar 

  81. Cao X, Peng X, Sun S, Zhong L, Chen W, Wang S, Sun RC (2015) Hydrothermal conversion of xylose, glucose, and cellulose under the catalysis of transition metal sulfates. Carbohydr Polym 118:44–51

    Google Scholar 

  82. Antal MJ, Mok WSL, Richards GN (1990) Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr Res 199(1):91–109

    Google Scholar 

  83. Körner P, Jung D, Kruse A (2018) The effect of different Brønsted acids on the hydrothermal conversion of fructose to HMF. Green Chem 20(10):2231–2241

    Google Scholar 

  84. Luijkx GCA, van Rantwijk F, van Bekkum H (1993) Hydrothermal formation of 1,2,4-benzenetriol from 5-hydroxymethyl-2-furaldehyde and d-fructose. Carbohydr Res 242:131–139

    Google Scholar 

  85. Kruse A, Gawlik A (2003) Biomass conversion in water at 330−410 °C and 30−50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind Eng Chem Res 42(2):267–279

    Google Scholar 

  86. Antal MJ, Mok WSL, Richards GN (1990) Four-carbon model compounds for the reactions of sugars in water at high temperature. Carbohydr Res 199(1):111–115

    Google Scholar 

  87. Horvat J, Klaic B, Metelko B, Sunjic V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26:2111–2114

    Google Scholar 

  88. Flannelly T, Lopes M, Kupiainen L, Dooley S, Leahy JJ (2016) Non-stoichiometric formation of formic and levulinic acids from the hydrolysis of biomass derived hexose carbohydrates. RSC Adv 6(7):5797–5804

    Google Scholar 

  89. Baccile N, Laurent G, Babonneau F, Fayon F, Titirici M-M, Antonietti M (2009) Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13 C NMR investigations. J Phys Chem C 113(22):9644–9654

    Google Scholar 

  90. Cheng Z, Everhart JL, Tsilomelekis G, Nikolakis V, Saha B, Vlachos DG (2018) Structural analysis of humins formed in the Brønsted acid catalyzed dehydration of fructose. Green Chem 20(5):997–1006

    Google Scholar 

  91. Li M, Li W, Liu S (2012) Control of the morphology and chemical properties of carbon spheres prepared from glucose by a hydrothermal method. J Mater Res 27(08):1117–1123

    Google Scholar 

  92. Funke A, Reebs F, Kruse A (2013) Experimental comparison of hydrothermal and vapothermal carbonization. Fuel Process Technol 115:261–269

    Google Scholar 

  93. Rasrendra CB, Windt M, Wang Y, Adisasmito S, Makertihartha IGBN, van Eck ERH, Meier D, Heeres HJ (2013) Experimental studies on the pyrolysis of humins from the acid-catalysed dehydration of C6-sugars. J Anal Appl Pyrolysis 104:299–307

    Google Scholar 

  94. Sykes P (ed) (1988) Reaktionsmechanismen der organischen Chemie: Eine Einführung, 9th edn. VCH, Weinheim

    Google Scholar 

  95. Castello D, Kruse A, Fiori L (2015) Low temperature supercritical water gasification of biomass constituents: glucose/phenol mixtures. Biomass Bioenergy 73:84–94

    Google Scholar 

  96. Kruse A (2008) Supercritical water gasification. Biofuels Bioprod Bioref 2:415–437

    Google Scholar 

  97. Chuntanapum A, Yong TL-K, Miyake S, Matsumura Y (2008) Behavior of 5-HMF in subcritical and supercritical water. Ind Eng Chem Res 47(9):2956–2962

    Google Scholar 

  98. Williams PT, Onwudili J (2005) Composition of products from the supercritical water gasification of glucose: a model biomass compound. Ind Eng Chem Res 44(23):8739–8749

    Google Scholar 

  99. Nikolov PY, Yaylayan VA (2011) Thermal decomposition of 5-(hydroxymethyl)-2-furaldehyde (HMF) and its further transformations in the presence of glycine. J Agric Food Chem 59(18):10104–10113

    Google Scholar 

  100. Gökkaya DS, Sağlam M, Yüksel M, Ballice L (2016) Hydrothermal gasification of xylose: effects of reaction temperature, pressure, and K2CO3 as a catalyst on product distribution. Biomass Bioenergy 91:26–36

    Google Scholar 

  101. Rawn JD (ed) (2014) Organic chemistry: structure, mechanism and synthesis. Elsevier

  102. Bicker M, Endres S, Ott L, Vogel H (2005) Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production. J Mol Catal A Chem 239(1–2):151–157

    Google Scholar 

  103. Hirosaka K, Koido K, Fukayama M, Ouryoji K, Hasegawa T (2008) Experimental and numerical study of ethanol oxidation in sub-critical water. J Supercrit Fluids 44(3):347–355

    Google Scholar 

  104. Zhai Z, Li X, Tang C, Peng J, Jiang N, Bai W, Gao H, Liao Y (2014) Decarbonylation of lactic acid to acetaldehyde over aluminum sulfate catalyst. Ind Eng Chem Res 53(25):10318–10327

    Google Scholar 

  105. Ma XJ, Yang XF, Zheng X, Lin L, Chen LH, Huang LL, Cao SL (2014) Degradation and dissolution of hemicelluloses during bamboo hydrothermal pretreatment. Bioresour Technol 161:215–220

    Google Scholar 

  106. Bajpai P (ed) Pretreatment of lignocellulosic biomass for biofuel production: structure of lignocellulosic biomass. Springer, Singapore

  107. Román S, Nabais JMV, Laginhas C, Ledesma B, González JF (2012) Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process Technol 103:78–83

    Google Scholar 

  108. Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841

    Google Scholar 

  109. Reza MT, Yan W, Uddin MH, Lynam JG, Hoekman SK, Coronella CJ, Vásquez VR (2013) Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresour Technol 139:161–169

    Google Scholar 

  110. Rissanen JV, Grénman H, Xu C, Willför S, Murzin DY, Salmi T (2014) Obtaining spruce hemicelluloses of desired molar mass by using pressurized hot water extraction. ChemSusChem 7(10):2947–2953

    Google Scholar 

  111. Lucian M, Fiori L (2017) Hydrothermal carbonization of waste biomass: process design, modeling, energy efficiency and cost analysis. Energies 10(2):211

    Google Scholar 

  112. Yan W, Hoekman SK, Broch A, Coronella CJ (2014) Effect of hydrothermal carbonization reaction parameters on the properties of hydrochar and pellets. Environ Prog Sustain Energy 33(3):676–680

    Google Scholar 

  113. Abdilla RM, Rasrendra CB, Heeres HJ (2018) Kinetic studies on the conversion of Levoglucosan to glucose in water using Brønsted acids as the catalysts. Ind Eng Chem Res 57(9):3204–3214

    Google Scholar 

  114. Zan Y, Sun Y, Kong L, Miao G, Bao L, Wang H, Li S, Sun Y (2018) Formic acid-induced controlled-release hydrolysis of microalgae (Scenedesmus) to lactic acid over Sn-beta catalyst. ChemSusChem 11(15):2492–2496

    Google Scholar 

  115. Cabeza A, Piqueras CM, Sobrón F, García-Serna J (2016) Modeling of biomass fractionation in a lab-scale biorefinery: solubilization of hemicellulose and cellulose from holm oak wood using subcritical water. Bioresour Technol 200:90–102

    Google Scholar 

  116. Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG (2013) Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. J Am Chem Soc 135(10):3997–4006

    Google Scholar 

  117. Klingler D, Berg J, Vogel H (2007) Hydrothermal reactions of alanine and glycine in sub- and supercritical water. J Supercrit Fluids 43(1):112–119

    Google Scholar 

  118. Sato N, Quitain AT, Kang K, Daimon H, Fujie K (2004) Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water. Ind Eng Chem Res 43(13):3217–3222

    Google Scholar 

  119. Piqueras CM, Cabeza Á, Gallina G, Cantero DA, García-Serna J, Cocero MJ (2017) Online integrated fractionation-hydrolysis of lignocellulosic biomass using sub- and supercritical water. Chem Eng J 308:110–125

    Google Scholar 

  120. BIO-RAD. guide to Aminex HPLC columns for food and beverage, biotechnology, and bio-organic analysis. MP 2016;82(1)

  121. Novotný O, Cejpek K, Velíšek J (2008) Formation of carboxylic acids during degradation of monosaccharides. Czech JFood Sci 26(2):113–131

    Google Scholar 

  122. Smith AM, Singh S, Ross AB Fate of inorganic material during hydrothermal carbonisation of biomass: influence of feedstock on combustion behaviour of hydrochar. Fuel 169:135–145

  123. Volpe M, Wüst D, Merzari F, Lucian M, Andreottola G, Kruse A, Fiori L (2018) One stage olive mill waste streams valorisation via hydrothermal carbonisation. Waste Manag 80:224–234

    Google Scholar 

  124. Faboya OO (1990) The interaction between oxalic acid and divalent ions - Mg2+, Zn2+ and Ca2+ - in aqueous medium. Food Chem 38:179–187

    Google Scholar 

  125. Bell DJ, Blake JD, Prazak M, Rowell D, Wilson PN (1991) Studies on yeast differentiation using organic acid metabolites part 1. Development of methodology using highperformance liquid chromatography. J Inst Brew 97:297–305

    Google Scholar 

  126. Jin F, Zhou Z, Enomoto H, Moriya T, Higashijima H (2004) Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid–base catalytic effect of subcritical water. Chem Lett 33(2):126–127

    Google Scholar 

  127. Li Y, Lu X, Yuan L, Liu X (2009) Fructose decomposition kinetics in organic acids-enriched high temperature liquid water. Biomass Bioenergy 33(9):1182–1187

    Google Scholar 

  128. Kumalaputri AJ, Randolph C, Otten E, Heeres HJ, Deuss PJ (2018) Lewis acid catalyzed conversion of 5-hydroxymethylfurfural to 1,2,4-benzenetriol, an overlooked biobased compound. ACS Sustain Chem Eng 6(3):3419–3425

    Google Scholar 

  129. Rodríguez Correa C, Stollovsky M, Hehr T, Rauscher Y, Rolli B, Kruse A (2017) Influence of the carbonization process on activated carbon properties from lignin and lignin-rich biomasses. ACS Sustain Chem Eng 5(9):8222–8233

    Google Scholar 

  130. Kang S, Li X, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Ind Eng Chem Res 51(26):9023–9031

    Google Scholar 

  131. Ravber M (2015) Hydrothermal degradation of fats, carbohydrates and proteins in sunflower seeds after treatment with subcritical water. Chem Biochem Eng Q 29(3):351–355

    Google Scholar 

  132. Abdelmoez W, Nakahasi T, Yoshida H (2007) Amino acid transformation and decomposition in saturated subcritical water conditions. Ind Eng Chem Res 46(16):5286–5294

    Google Scholar 

  133. Titirici M-M, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem 10(11):1204

    Google Scholar 

  134. Peterson AA, Lachance RP, Tester JW (2010) Kinetic evidence of the Maillard reaction in hydrothermal biomass processing: glucose−glycine interactions in high-temperature, high-pressure water. Ind Eng Chem Res 49(5):2107–2117

    Google Scholar 

  135. Fan Y, Hornung U, Dahmen N, Kruse A. Formation of N-containing heterocycles from hydrothermal liquefaction of modell compounds and sewage sludge. Proceedings of the 24th European Biomass Conference 2017

  136. Fan Y, Hornung U, Dahmen N, Kruse A (2018) Hydrothermal liquefaction of protein-containing biomass: study of model compounds for Maillard reactions. Biomass Conv Bioref 8(4):909–923

    Google Scholar 

  137. Wang T, Zhai Y, Zhu Y, Peng C, Xu B, Wang T, Li C, Zeng G (2018) Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste. Bioresour Technol 247:182–189

    Google Scholar 

  138. Teri G, Luo L, Savage PE (2014) Hydrothermal treatment of protein, polysaccharide, and lipids alone and in mixtures. Energy Fuel 28(12):7501–7509

    Google Scholar 

  139. Qiao L, Chen J, Ying Y, Zheng J-W, Jiang L (2013) Influence of NH4 + on the preparation of carbonaceous spheres by a hydrothermal process. J Mater Sci 48(9):3341–3346

    Google Scholar 

  140. Biller P, Riley R, Ross AB (2011) Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids. Bioresour Technol 102(7):4841–4848

    Google Scholar 

  141. Broch A, Hoekman S, Jena U, Langford J (2014) Analysis of solid and aqueous phase products from hydrothermal carbonization of whole and lipid-extracted algae. Energies 7(1):62–79

    Google Scholar 

  142. Heilmann SM, Jader LR, Harned LA, Sadowsky MJ, Schendel FJ, Lefebvre PA, von Keitz MG, Valentas KJ (2011) Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Appl Energy 88(10):3286–3290

    Google Scholar 

  143. Lucian M, Volpe M, Gao L, Piro G, Goldfarb JL, Fiori L (2018) Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel 233:257–268

    Google Scholar 

  144. Gao L, Volpe M, Lucian M, Fiori L, Goldfarb JL (2019) Does hydrothermal carbonization as a biomass pretreatment reduce fuel segregation of coal-biomass blends during oxidation? Energy Convers Manag 181:93–104

    Google Scholar 

  145. Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, Kern J (2011) Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol 102(19):9255–9260

    Google Scholar 

  146. Rathsack P, Reichel D, Krzack S, Otto M (2014) Komprehensive Gaschromatographie-Massenspektrometrie von Alkylbenzolen in Pyrolyseölen aus Biomasse und Kohle. Chem Ing Tech 86(10):1779–1789

    Google Scholar 

  147. Oka H, Yamago S, Yoshida J, Kajimoto O (2002) Evidence for a hydroxide ion catalyzed pathway in ester hydrolysis in supercritical water. Angew Chem Int Ed 41(4):623–625

    Google Scholar 

  148. Simsir H, Eltugral N, Karagöz S (2017) Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization. Bioresour Technol 246:82–87

    Google Scholar 

  149. Álvarez-Murillo A, Sabio E, Ledesma B, Román S, González-García CM (2016) Generation of biofuel from hydrothermal carbonization of cellulose. Kinetics modelling. Energy 94:600–608

    Google Scholar 

  150. Liu X, Song P, Hou J, Wang B, Xu F, Zhang X (2017) Revealing the dynamic formation process and mechanism of hollow carbon spheres: from bowl to sphere. ACS Sustain Chem Eng 6(2):2797–2805

    Google Scholar 

  151. Li R, Wang L, Shahbazi A (2015) A review of hydrothermal carbonization of carbohydrates for carbon spheres preparation. Tr Ren Energy 1(1):43–56

    Google Scholar 

  152. Zhang M, Yang H, Liu Y, Sun X, Zhang D, Xue D (2012) Hydrophobic precipitation of carbonaceous spheres from fructose by a hydrothermal process. Carbon 50(6):2155–2161

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the students Johannes Winkler and Markus Götz from the University of Hohenheim for their efforts in experimentation and analytics as well as Sonja Habicht, Hermann Köhler, and Armin Lautenbach from the Institute of Catalysis Research and Technology of the Karlsruhe Institute of Technology for the technical support regarding the analysis of solid and liquid samples.

Funding

The work was financially supported by the Federal Ministry of Education and Research within the project Humboldt Reloaded during the winter semester 2017/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Wüst.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Detailed understanding of the reaction pathways originated from oligosaccharides during the hydrothermal carbonization of soft lignocellulosic biomass

• Control of mass transfer during hydrolysis of oligosaccharides from small biomass particle sizes through the fast condensation and polymerization of reactive dehydration products

• Enhancement of yields and carbon retention efficiencies during hydrothermal carbonization by recirculation of residual process water from HMF synthesis instead of using water

Electronic supplementary material

ESM 1

(DOCX 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wüst, D., Correa, C.R., Jung, D. et al. Understanding the influence of biomass particle size and reaction medium on the formation pathways of hydrochar. Biomass Conv. Bioref. 10, 1357–1380 (2020). https://doi.org/10.1007/s13399-019-00488-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00488-0

Keywords

Navigation