Skip to main content

Advertisement

Log in

Third-generation biorefineries: a sustainable platform for food, clean energy, and nutraceuticals production

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Sustainable transformation of biomass into a wide range of valuable chemicals, fuels, and materials is the eventual goal of a biorefinery. Algal feedstock (microalgae and macroalgae) is a principal component of third-generation (3G) biorefinery empowering the bio-renewables industry. While first-generation (1G) biorefineries are commercially viable, products (fuels and commodity chemicals) from second-generation (2G) and 3G biorefinery are not yet commercially competitive due to the gross technical challenges, scalable and production cost issues. Because of the inherently diversified nature of feedstock used in 3G biorefineries, a myriad of specific bioproducts can be produced. Furthermore, stable food/feed supply, environmental concerns, climate change, and geopolitical issues have necessitated the exploration of 3G feedstocks into fuels and renewable chemicals. Considerable success has been seen in research laboratories in the last two or three decades which led to mature technical developments in algal biomass conversion. However, the scale-up issues are still posing a big challenge for the commercial exploitation of algal feedstock into fuels and chemicals. Nevertheless, various products such as nutraceuticals, pharmaceuticals, and cosmetics are successfully being produced from algal feedstock. This review paper describes the technical developments, industrial scenario, environmental issues, and range of diversified products from 3G biorefineries. Specially, we focus on the exploration of algal biomass into fuels and biochemicals via multidisciplinary technological routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Valin H, Sands RD, van der Mensbrugghe D, Nelson GC, Ahammad H, Blanc E, Willenbocke 1D (2013) The future of food demand: understanding differences in global economic models. Agric Econ 45:51–67

    Article  Google Scholar 

  2. Chandel AK, Garlapati VK, Singh AK, Antunes FAF, Silva SS (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381

    Article  Google Scholar 

  3. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421

    Article  Google Scholar 

  4. De Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Pandey A, Höfer R, Taherzadeh M, Nampoothiri KM, Larroche C (eds) Industrial biorefineries & white biotechnology, 1st edn. Elsevier, Amsterdam, pp 3–33

    Chapter  Google Scholar 

  5. Chisti Y (2016) Large-scale production of algal biomass: raceway ponds. In: Bux F, Chisti Y (eds) Algae biotechnology: products and processes. Springer International Publishing, Cham, pp 21–40

    Chapter  Google Scholar 

  6. Sánchez-Tuirán E, El-Halwagi MM, Kafarov V (2012) Integrated utilization of algae biomass in a biorefinery based on a biochemical processing platform. Integrated Biorefineries. CRC Press, Boca Raton, Florida, USA, pp 707–726

    Google Scholar 

  7. Moncada J, Tamayo JA, Cardona CA (2014) Integrating first, second, and third generation biorefineries: incorporating microalgae into the sugarcane biorefinery. Chem Eng Sci 118:126–140

    Article  Google Scholar 

  8. Jonker JGG, Faaij APC (2013) Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Appl Energy 102:461–475

    Article  Google Scholar 

  9. Dias MOS, Junqueira TL, Cavalett O, Pavanello LG, Cunha MP, Jesus CDF, Maciel Filho R, Bonomi A (2013) Biorefineries for the production of first- and second-generation ethanol and electricity from sugarcane. Appl Energy 109:72–78

    Article  Google Scholar 

  10. Posada JA, Patel AD, Roes L, Blok K, Faaij AP, Patel MK (2013) Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products. Bioresour Technol 135:490–499

    Article  Google Scholar 

  11. Trivedi J, Aila M, Bangwal DP, Kaul S, Garg MO (2015) Algae based biorefinery—how to make sense? Renew Sust Energ Rev 47:295–307

    Article  Google Scholar 

  12. Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Microalgal culture. Handbook, Blackwell, Oxford, pp 312–351

    Google Scholar 

  13. Li X, Yang N (2013) Modeling the light distribution in air lift photobioreactors under simultaneous external and internal illumination using the two-flux model. Chem Eng Sci 88:16–22

    Article  Google Scholar 

  14. Hughes SR, Gibbons WR, Moser BR, Rich JO (2013) Sustainable multipurpose biorefineries for third-generation biofuels and value-added co-products. In: Zhen F (ed) Biofuels-economy, environment and sustainability, 1st edn. Intech Open, London, pp 3–37

    Google Scholar 

  15. Ghosh A, Khanra S, Mondal M, Halder G, Tiwari ON, Saini S, Bhowmick TK, Gayen K (2016) Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value-added chemicals: a review. Energy Convers Manag 113:104–118

    Article  Google Scholar 

  16. Nigam SN, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  Google Scholar 

  17. Hirayama S, Ueda R (2004) Production of optically pure D-lactic acid by Nannochlorum sp. 26A4. Appl Biochem Biotechnol 119:71–78

    Article  Google Scholar 

  18. Zhu L (2015) Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renew Sust Energ Rev 41:1376–1384

    Article  Google Scholar 

  19. Bixler HJ, Porse H (2010) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335

    Article  Google Scholar 

  20. Rhein-Knudsen N, Ale M, Meyer A (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs 13:3340–3359

    Article  Google Scholar 

  21. Schirmer A, Rude MA, Li X, Del Popova E, Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329(5991):559–562

    Article  Google Scholar 

  22. Batan LY, Graff GD, Bradley TH (2016) Techno-economic and Monte Carlo probabilistic analysis of microalgae biofuel production system. Bioresour Technol 219:45–52

    Article  Google Scholar 

  23. Sankar V, Daniel DK, Krastanov A (2011) Carbon dioxide fixation by Chlorella minutissimabatch cultures in a stirred tank bioreactor. Biotechnol Biotechnol Equip 25:2468–2476

    Article  Google Scholar 

  24. Gong Y, Jiang M (2011) Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Lett 33:1269–1284

    Article  Google Scholar 

  25. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    Article  Google Scholar 

  26. Dragone G, Fernandes B, Vicente A, Teixeira J (2010) Third generation biofuels from microalgae. In: Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol, pp 1355–1366

    Google Scholar 

  27. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  Google Scholar 

  28. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  Google Scholar 

  29. Ríos SD, Torres CM, Torras C, Salvadó J, Mateo-Sanz JM, Jiménez L (2013) Microalgae-based biodiesel: economic analysis of downstream process realistic scenarios. Bioresour Technol 136:617–625

    Article  Google Scholar 

  30. Tran NH, Bartlett JR, Kannangara GSK, Milev AS, Volk H, Wilson MA (2009) Catalytic upgrading of biorefinery oil from micro-algae. Fuel 89:265–274

    Article  Google Scholar 

  31. Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    Article  Google Scholar 

  32. Hernández D, Riaño B, Coca M, García-González MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945

    Article  Google Scholar 

  33. Batyrova KA, Gavrisheva A, Ivanova E (2015) Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp. Int J Mol Sci 16:2705–2716

    Article  Google Scholar 

  34. Dasgupta CN, Suseela MR, Mandotra SK (2015) Dual uses of microalgal biomass: an integrative approach for biohydrogen and biodiesel production. Appl Energy 146:202–208

    Article  Google Scholar 

  35. Ren HY, Liu BF, Kong F (2015) Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal. Water Res 85:404–412

    Article  Google Scholar 

  36. Sengmee D, Cheirsilp B, Suksaroge TT, Prasertsan P (2017) Biophotolysis-based hydrogen and lipid production by oleaginous microalgae using crude glycerol as exogenous carbon source. Int J Hydrog Energy 42:1970–1197

    Article  Google Scholar 

  37. Bhuyar P, Yusoff MM, Ab Rahim MH, Sundararaju S, Maniam GP, Govindan N (2020) Effect of plant hormones on the production of biomass and lipid extraction for biodiesel production from microalgae Chlorella sp. The J Microbiol Biotechnol Food Sci 9:671

    Article  Google Scholar 

  38. Wu H, Li J, Liao Q, Fu Q, Liu Z (2020) Enhanced biohydrogen and biomethane production from Chlorella sp. with hydrothermal treatment. Energy Convers Manag 205:112373

    Article  Google Scholar 

  39. Chen S, Qu D, Xiao X, MiaoX (2020) Biohydrogen production with lipid-extracted Dunaliella biomass and a new strain of hyper-thermophilic archaeon Thermococcus eurythermalis A501. Int J Hydrog Energy 45: 12721–12730

  40. Varela-Bojórquez N, Rocha VR, Angulo MÁ (2016) Production of bioethanol from biomass of microalgae Dunaliella tertiolecta. Int J Env Agri Res 2:110–116

    Google Scholar 

  41. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  Google Scholar 

  42. Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167(3):201–214

    Article  Google Scholar 

  43. Gutiérrez CDB, Serna DLR, Alzate CAC (2017) A comprehensive review on the implementation of the biorefinery concept in biodiesel production plants. Biofuel Res J 15:691–703

    Google Scholar 

  44. Zeng X, Guo X, Su G, Danquah MK, Chen XD, Lin L, Lu Y (2016) Harvesting of microalgal biomass. In: Bux F, Chisti Y (eds) Algae biotechnology: products and processes. Springer International Publishing, Cham, pp 77–89

    Chapter  Google Scholar 

  45. Pittman JK, Dean AP, Osundeko O (2010) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  Google Scholar 

  46. Singh A, Nigam PS, Murphy JD (2010) Mechanism and challenges in commercialization of algal biofuels. Bioresour Technol 102:26–34

    Article  Google Scholar 

  47. Sankaran R, Cruz RAP, Pakalapati H, Show PL, Ling TC, Wei-Hsin C, Tao Y (2020) Recent advances in the pretreatment of microalgal and lignocellulosic biomass: a comprehensive review. Bioresour Technol 298:122476

    Article  Google Scholar 

  48. Nagarajan D, Chang JS, Lee DJ (2020) Pretreatment of microalgal biomass for efficient biohydrogen production – recent insights and future perspectives. Bioresour Technol 302:122871

    Article  Google Scholar 

  49. D’Hondt E, Martin-Juarez J, Bolado S, Kasperoviciene J, Koreiviene J, Sulcius S, Elst K, Bastiaens L (2017) 6 - cell disruption technologies. In: Gonzalez-Fernandez C, Munoz R (eds) Microalgae-based biofuels and bioproducts. Woodhead Publishing, Cambridge, UK, pp 133–154

    Chapter  Google Scholar 

  50. Dixon C, Wilken LR (2018) Green microalgae biomolecule separations and recovery. Bioresour Bioproc 5(1):14

    Article  Google Scholar 

  51. Lee SY, Cho JM, Chang YK, Oh YK (2017) Cell disruption and lipid extraction for microalgal biorefineries: a review. Bioresour Technol 244(Pt 2):1317–1328

    Article  Google Scholar 

  52. Lari Z, Ahmadzadeh H, Hosseini M (2019) Cell wall disruption: a critical upstream process for biofuel production. In: Hosseini M (ed) Advances in feedstock conversion technologies for alternative fuels and bioproducts. Woodhead Publishing, Cambridge, UK, pp 21–35

    Chapter  Google Scholar 

  53. Prajapati SK, Bhattacharya A, Malik A, Vijay VK (2015a) Pretreatment of algal biomass using fungal crude enzymes. Algal Res 8:8–14

    Article  Google Scholar 

  54. Prajapati SK, Malik A, Vijay VK, Sreekrishnan TR (2015b) Enhanced methane production from algal biomass through short duration enzymatic pretreatment and co-digestion with carbon rich waste. RSC Adv 5:67175–67183

    Article  Google Scholar 

  55. Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38

    Article  Google Scholar 

  56. Dauenhauer PJ, Dreyer BJ, Degenstein NJ, Schmidt LD (2007) Millisecond reforming of solid biomass for sustainable fuels. Angew Chem Int Ed 46:5864–5867

    Article  Google Scholar 

  57. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20(3):848–889

    Article  Google Scholar 

  58. Huber GW, Dale BE (2009) Grassoline at the pump. Sci Am 301(1):52–59

    Article  Google Scholar 

  59. Quitain AT, Katoh S, Goto M (2006) Microwave-assisted synthesis of biofuels. London, UK, Intech Open

    Google Scholar 

  60. Patil PD, Gude VG, Mannarswamy A, Cooke P, Nirmalakhandan N, Lammers P, Deng S (2012) Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel 97:822–831

    Article  Google Scholar 

  61. Medipally SR, Yusoff FM, Banerjee S, Shariff M (2015) Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res Int 20(3):848–889

    Google Scholar 

  62. Momirlan M, Veziroglu T (2002) Current status of hydrogen energy. Renew Sust Energ Rev 6:141–179

    Article  Google Scholar 

  63. Khetkorn W, Rastogi RP, Incharoensakdi A (2017) Microalgal hydrogen production—a review. Bioresour Technol 243:1194–1206

    Article  Google Scholar 

  64. Hossain N, Mahlia TMI, Saidur R (2019) Latest development in microalgae-biofuel production with nano-additives. Biotechnol Biofuels 12:125

    Article  Google Scholar 

  65. Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  Google Scholar 

  66. Aremu AO, Neményi M, Stirk WA (2015) Manipulation of nitrogen levels and mode of cultivation are viable methods to improve the lipid, fatty acids, phytochemical content, and bioactivities in Chlorella minutissima. J Phycol 51:659–669

    Article  Google Scholar 

  67. Praveenkumar R, Shameera K, Mahalakshmi G (2012) Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production. Biomass Bioenergy 37:60–66

    Article  Google Scholar 

  68. Li Z, Yuan H, Yang J, Li B (2011) Optimization of the biomass production of oil algae Chlorella minutissima UTEX 2341. Bioresour Technol 102:9128–9134

    Article  Google Scholar 

  69. Velasquez-Orta SB, Lee JGM, Harvey AP (2013) Evaluation of FAME production from wet marine and freshwater microalgae by in situ transesterification. Biochem Eng J 76:83–89

    Article  Google Scholar 

  70. Gour RS, Bairagi M, Garlapati VK, Kant A (2018) Enhanced microalgal lipid production with media engineering of potassium nitrate as a nitrogen source. Bioengineered 9:98–107

    Article  Google Scholar 

  71. Gour RS, Garlapati VK, Kant A (2020) Effect of salinity stress on lipid accumulation in Scenedesmus sp. and Chlorella sp.: feasibility of stepwise culturing. Curr Microbiol 77:779–785

    Article  Google Scholar 

  72. Mofijur M, Rasul MG, Hassan NM, Nabi MN (2019) Recent developments in production of third generation biodiesel from microalgae. Energy Procedia 156:53–58

    Article  Google Scholar 

  73. Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573. https://doi.org/10.1016/j.pecs.2007.11.001

    Article  Google Scholar 

  74. Hernández D, Solana M, Riaño B, García-González MC, Bertucco A (2014) Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresour Technol 170:370–378

    Article  Google Scholar 

  75. Reyimu Z, Ozçimen D (2017) Batch cultivation of marine microalgae Nannochloropsis oculata and Tetraselmis suecica in treated municipal wastewater toward bioethanol production. J Clean Prod 150:40–46. https://doi.org/10.1016/j.jclepro.2017.02.189

    Article  Google Scholar 

  76. Chen CY, Kao PC, Tsai CJ, Lee DJ, Chang JS (2013) Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresour Technol 145:307–312

    Article  Google Scholar 

  77. Dragone G, Fernandes BD, Abreu AP (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335. https://doi.org/10.1016/j.apenergy.2011.03.012

    Article  Google Scholar 

  78. Chandel AK, Garlapati VK, Kumar SPJ, Singh AK, Hans M, Kumar S (2020) The realm of renewable chemicals and biofuels in building bio-economy. Biofuel Bioprod Bioref (Accepted, In Press) (DOI: https://doi.org/10.1002/bbb.2104)

  79. Chng LM, Lee KT, Chan DJC (2017) Synergistic effect of pretreatment and fermentation process on carbohydrate-rich Scenedesmus dimorphus for bioethanol production. Energy Convers Manag 141:410–419. https://doi.org/10.1016/j.enconman.2016.10.026

    Article  Google Scholar 

  80. Samudrala PJK, Garlapati VK, Dash A, Banerjee R, Scholz P (2017) Sustainable green solvents and techniques for lipid extraction from microalgae: a review. Algal Res 21:138–147

    Article  Google Scholar 

  81. Banerjee R, Kumar SPJ, Mehendale N, Sevda S, Garlapati VK (2019) Intervention of microfluidics in biofuel and bioenergy sectors: technological considerations and future prospects. Renew Sust Energ Rev 101:548–558

    Article  Google Scholar 

  82. Bajpai A, Garlapati VK, Gour RS, Kant A (2017) Evaluation of microalgae from Himalayan region for nutraceutical activities. Int J Pharma Biosci 8(2):(B) 174–(B) 178

    Google Scholar 

  83. Sevda S, Garlapati VK, Sharma S, Bhattacharya S, Sreekrishnan TR (2019) Microalgae at niches of bio-electrochemical systems: a new platform for sustainable energy production coupled industrial effluents. Bioresour Technol Rep 7C:100290

    Article  Google Scholar 

  84. Jha D, Jain V, Sharma B, Garlapati VK (2017) Microalgae-based pharmaceuticals and nutraceuticals: an emerging field with immense market potential. Chem Bio Eng Rev 4(4):257–272

    Google Scholar 

  85. Camacho F, Macedo A, Malcata F (2019) Potential industrial applications and commercialization of microalgae in the functional food and feed industries: a short review. Mar Drugs 17:312

    Article  Google Scholar 

  86. de Morais MG, Vaz Bda S, de Morais EG, Costa JA (2015) Biologically active metabolites synthesized by microalgae. Biomed Res Int 2015:835761–835715. https://doi.org/10.1155/2015/835761

    Article  Google Scholar 

  87. Cuellar-Bermudez SP, Aleman-Nava GS, Chandra R, Garcia-Perez JS, Contreras-Angulo JR, Markou G, Muylaert K, Rittmann BE, Parra-Saldivar R (2016) Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Res 24:438–449. https://doi.org/10.1016/j.algal.2016.08.018

    Article  Google Scholar 

  88. Koyande AK, Chew KW, Rambabu K, Tao Y, Chu D-T, Show P-L (2019) Microalgae: a potential alternative to health supplementation for humans. Food Sci Human Wellness 8:16–24

    Article  Google Scholar 

  89. Cieśla Ł, Moaddel R (2016) Comparison of analytical techniques for the identification of bioactive compounds from natural products. Nat Prod Rep 33:1131–1145

    Article  Google Scholar 

  90. Roux JM, Lamotte H, Achard JL (2017) An overview of microalgae lipid extraction in a biorefinery framework. Energy Procedia 112:680–688

    Article  Google Scholar 

  91. Chandra R, Das P, Vishal G, Nagra S (2019) Factors affecting the induction of UV protectant and lipid productivity in Lyngbya for sequential biorefinery product recovery. Bioresour Technol 278:303–310. https://doi.org/10.1016/j.biortech.2019.01.084

    Article  Google Scholar 

  92. Venkata Mohan S, Rohit MV, Chiranjeevi P, Chandra R, Navaneeth B (2015) Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives. Bioresour Technol 184:169–178

    Article  Google Scholar 

  93. Liu Y, Lai YJS, Thiago Barbosa TS, Chandra R, Parameswaran P, Rittmann BE (2019) Electro-selective fermentation enhances lipid extraction and biohydrogenation of Scenedesmus acutus biomass. Algal Res 38:101397

    Article  Google Scholar 

  94. Biller P, Ross AB (2014) Pyrolysis GC–MS as a novel analysis technique to determine the biochemical composition of microalgae. Algal Res 6:91–97

    Article  Google Scholar 

  95. Cheng J, Li K, Yang Z, Zhou J, Cen K (2016) Enhancing the growth rate and astaxanthin yield of Haematococcus pluvialis by nuclear irradiation and high concentration of carbon dioxide stress. Bioresour Technol 204:49–54

    Article  Google Scholar 

  96. Jensen A (1993) Present and future needs for algae and algal products. Hydrobiologia 260–261:15–23

    Article  Google Scholar 

  97. Ross AB, Jones JM, Kubacki ML, Bridgeman T (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol 99:6494–6504

    Article  Google Scholar 

  98. Pádua M, de Fontoura P, Growoski S, Mathias AL (2004) Chemical composition of Ulvaria oxysperma (Kützing) bliding, Ulva lactuca (Linnaeus) and Ulva fascita (Delile). Braz Arch Biol Technol 47:49–55

    Article  Google Scholar 

  99. Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142

    Article  Google Scholar 

  100. Rinaudo M (2014) Biomaterials based on a natural polysaccharide: alginate. TIP 17:92–96

    Article  Google Scholar 

  101. Kim D-Y, Vijayan D, Praveenkumar R (2016) Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresour Technol 199:300–310. https://doi.org/10.1016/j.biortech.2015.08.107

    Article  Google Scholar 

  102. Chen CY, Zhao XQ, Yen HW (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10. https://doi.org/10.1016/j.bej.2013.03.006

    Article  Google Scholar 

  103. Bonnet S, Webb EA, Panzeca C, Karl DM, Capone DG, Sanudo-Wilhelmy SA (2010) Vitamin B12 excretion by cultures of the marine cyanobacteria Crocosphaera and Synechococcus. Limnol Oceanogr 55:1959–1964

    Article  Google Scholar 

  104. Del Campo J, Garcia-Gonzalez M, Guerrero M (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174

    Article  Google Scholar 

  105. Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727

    Article  Google Scholar 

  106. Shi X, Zhang X, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzym Microb Technol 27:312–318

    Article  Google Scholar 

  107. González S, Astner S, An W, Goukassian D, Pathak MA (2003) Dietary lutein/zeaxanthin decreases ultraviolet B-induced epidermal hyperproliferation and acute inflammation in hairless mice. J Invest Dermatol 121:399–405

    Article  Google Scholar 

  108. Sánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J (2008) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43:398–405

    Article  Google Scholar 

  109. Graziani G, Schiavo S, Nicolai MA, Buono S, Fogliano V (2013) Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food Funct 4:144–152

    Article  Google Scholar 

  110. Shi X, Wu Z, Chen F (2006) Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures. Mol Nutr Food Res 50(8):763–768

    Article  Google Scholar 

  111. Del Campo J, Rodriguez H, Moreno J, Vargas M, Rivas J, Guerrero M (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64(6):848–854

    Article  Google Scholar 

  112. Microbial Technology for Future Biofuel (2020) In: Bhatia L, Sarangi PK (eds) ISBN: 978–81-944069. Empyreal Publishing House. India, Publisher

    Google Scholar 

  113. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. https://doi.org/10.1263/jbb.101.87

    Article  Google Scholar 

  114. Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, Eppink MHM (2013) Biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149

    Article  Google Scholar 

  115. Richmond A (1988) Spirulina. In: Borowitzka A, Borowitzka L (eds) Microalgal biotechnology. Cambridge University Press, United Kingdom, pp 83–121

    Google Scholar 

  116. Ginzberg A, Cohen M, Sod-Moriah UA, Shany S, Rosenshtrauch A, Arad S (2000) Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. J Appl Phycol 12:325–330

    Article  Google Scholar 

  117. Naghshbandi MP, Tabatabaei M, Aghbashlo M, Aftab MN, Iqbal I (2019) Metabolic engineering of microalgae for biofuel production. In: Spilling K (ed) Biofuels from algae. Methods in molecular biology. Humana, New York, pp 153–172. https://doi.org/10.1007/7651_2018_205

    Chapter  Google Scholar 

  118. Gong Y, Hu H, Gao Y, Xu X, Gao H (2011) Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J Ind Microbiol Biotechnol 38(12):1879–1890

    Article  Google Scholar 

  119. Song X, Wang J, Wang Y, Feng Y, Cui Q, Lu Y (2018) Artificial creation of Chlorella pyrenoidosa mutants for economic sustainable food production. Bioresour Technol 268:340–345

    Article  Google Scholar 

  120. Wang ZX, Zhuge J, Fang H, Prior BA (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19:201–223

    Article  Google Scholar 

  121. Chu WL (2012) Biotechnological applications of microalgae. Int e-J Sci Med Edu 6:24–37

    Article  Google Scholar 

  122. Singh D, Puri M, Wilkens S, Mathur AS, Tuli DK, Barrow CJ (2013) Characterization of a new zeaxanthin producing strain of Chlorella saccharophila isolated from New Zealand marine waters. Bioresour Technol 143:308–314

    Article  Google Scholar 

  123. Laurens LM, Markham J, Templeton DW, Christensen ED, Van Wychen S, Vadelius EW, Chen-Glasser M, Dong T, Davis R, Pienkos PT (2017) Development of algae biorefinery concepts for biofuels and bioproducts; a perspective on process-compatible products and their impact on cost-reduction. Energy Environ Sci 10:1716–1738

    Article  Google Scholar 

  124. Maity SK (2015) Opportunities, recent trends and challenges of integrated biorefinery: part I. Renew Sust Energ Rev 43:1427–1445

    Article  Google Scholar 

  125. Panis G, Carreon JR (2016) Commercial astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Algal Res 18:175–190

    Article  Google Scholar 

  126. Hejazi MA, Wijffels RH (2004) Milking microalgae. Trends Biotechnol 22:184–194

    Article  Google Scholar 

  127. Duong VT, Li Y, Nowak E, Schenk PM (2012) Microalgae isolation and selection for prospective biodiesel production. Energies 5:1835–1849

    Article  Google Scholar 

  128. IRENA. Renewable energy and jobs - Annual Review, International Renewable Energy Agency, Abu Dhabi, 2018 (August 12, 2018) Available from: http://irena.org/publications/2018/May/Renewable-Energy-and-Jobs-Annual-Review-2018

  129. Varfolomeev SD, Wasserman LA (2011) Microalgae as source of biofuel, food, fodder, and medicines. Appl Biochem Microbiol 47(9):789–807

    Article  Google Scholar 

  130. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  Google Scholar 

  131. Brownbridge G, Azadi P, Smallbone A, Bhave A, Taylor B, Kraft M (2014) The future viability of algae-derived biodiesel under economic and technical uncertainties. Bioresour Technol 151:166–173

    Article  Google Scholar 

  132. Barry A, Wolfe A, English C, Ruddick C, Lambert D (2016) National algal biofuels technology review, 2016, vol EE-3B. USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office

    Book  Google Scholar 

  133. Brundtland G (1987) Report of the world commission on environment and development: our common future. United Nations General Assembly Document A/42/427

  134. Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems – a LCA case study. Appl Energy 87:47–57

    Article  Google Scholar 

  135. Mussatto SI (2016) Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. ISBN: 978-0-12-802323-5. Elsevier Press, Netherland. https://doi.org/10.1016/c2014-0-01890-4

    Book  Google Scholar 

  136. Valdivia M, Galan JL, Laffarga J, Ramos JL (2016) Biofuels 2020: biorefineries based on lignocellulosic materials. Microb Biotechnol 9:585–594

    Article  Google Scholar 

  137. Khoo CG, Dasan YK, Lam MK, Lee KT (2019) Algae biorefinery: review on a broad spectrum of downstream processes and products. Bioresour Technol 292:121964

    Article  Google Scholar 

  138. Anto S, Mukherjee SS, Muthappa R, Mathimani T, Deviram G, Kumar SS, Verma TN, Pugazhendhi A (2020) Algae as green energy reserve: technological outlook on biofuel production. Chemosphere 242:125079

    Article  Google Scholar 

  139. Chandra R, Iqbal HMN, Vishal G, Lee HS, Nagra S (2019) Algal biorefinery: a sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour Technol 278:346–359

    Article  Google Scholar 

  140. Liu Z, Wang K, Chen Y, Tan T, Nielsen J (2020) Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat Catal 3:274–288

    Article  Google Scholar 

Download references

Acknowledement

The resource facilities provided by JUIT, India, to execute the present review is greatly acknowledged by VKG.

Funding

AKC gratefully acknowledges the CAPES-Brazil for the financial assistance (Process USP number: 15.1.1118.1.0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj K. Chandel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, L., Bachheti, R.K., Garlapati, V.K. et al. Third-generation biorefineries: a sustainable platform for food, clean energy, and nutraceuticals production. Biomass Conv. Bioref. 12, 4215–4230 (2022). https://doi.org/10.1007/s13399-020-00843-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00843-6

Keywords

Navigation