Skip to main content

Advertisement

Log in

Kinetic modelling for thermal decomposition of agricultural residues at different heating rates

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The purpose of this work was to establish the pyrolysis kinetics of agricultural biomass residues (mustard husk (MH), cotton stalk (CS), and groundnut shell (GNS)) using thermogravimetric analysis (TGA). TGA is carried out at different heating rates (5, 10, 30, and 50 K/min) under inert conditions in the temperature range of 303–1173 K. The iso-conversional methods of Friedman, Kissinger-Akahira-Sunose, and Flynn-Wall-Ozawa were used to estimate the activation energy of the decomposition process. The Criado method, Coats-Redfern Method, and Direct Differential methods were used to model the kinetics, with the latter two methods providing a closer fit with the experimental data. The kinetics of thermal degradation were separately studied for three temperature zones represented as drying, active, and passive zones. The results of Coats-Redfern and Direct Differential methods showed that (i) the nth-order reaction model is applicable for all the samples with order of reaction in the active zone being around ~ 2.0–3.0, ~ 2.5–3.0, and ~ 3.0 for MH, CS, and GNS, respectively, and (ii) the D-3 model is applicable for all the samples in the passive zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vassilev SV, Vassileva CG, Vassilev VS (2015) Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview. Fuel 158:330–350. https://doi.org/10.1016/j.fuel.2015.05.050

    Article  Google Scholar 

  2. Hinai MA (2018) Characterisation and thermochemical conversion of rice husk for biochar production. Int J Renew Energy Res 8:1648–1656

    Google Scholar 

  3. Zhou X, Li W, Mabon R, Broadbelt LJ (2017) A critical review on hemicellulose pyrolysis. Energy Technol 5:52–79. https://doi.org/10.1002/ente.201600327

    Article  Google Scholar 

  4. Shukla N, Sahoo D, Remya N (2019) Biochar from microwave pyrolysis of rice husk for tertiary wastewater treatment and soil nourishment. J Clean Prod 235:1073–1079. https://doi.org/10.1016/j.jclepro.2019.07.042

    Article  Google Scholar 

  5. Gupta A, Thengane SK, Mahajani S (2020) Kinetics of pyrolysis and gasification of cotton stalk in the central parts of India. Fuel 263:116752. https://doi.org/10.1016/j.fuel.2019.116752

    Article  Google Scholar 

  6. Prakash A, Vadivel V, Banu SF et al (2018) Evaluation of antioxidant and antimicrobial properties of solvent extracts of agro-food by-products (cashew nut shell, coconut shell and groundnut hull). Agric Nat Resour 52:451–459. https://doi.org/10.1016/j.anres.2018.10.018

    Article  Google Scholar 

  7. Welcome to ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India. http://www.drmr.res.in/about_rmcrop.php. Accessed 2 Feb 2021

  8. Biswas B, Pandey N, Bisht Y et al (2017) Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour Technol 237:57–63. https://doi.org/10.1016/j.biortech.2017.02.046

    Article  Google Scholar 

  9. Hiloidhari M, Das D, Baruah DC (2014) Bioenergy potential from crop residue biomass in India. Renew Sust Energ Rev 32:504–512. https://doi.org/10.1016/j.rser.2014.01.025

    Article  Google Scholar 

  10. Maiti S, Purakayastha S, Ghosh B (2007) Thermal characterization of mustard straw and stalk in nitrogen at different heating rates. Fuel 86:1513–1518. https://doi.org/10.1016/j.fuel.2006.11.016

    Article  Google Scholar 

  11. Raju GU, Kumarappa S, Gaitonde VN (2012) Mechanical and physical characterization of agricultural waste reinforced polymer composites. J Mater Environ Sci 3:907–916

    Google Scholar 

  12. Fernandez A, Saffe A, Pereyra R et al (2016) Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis. Appl Therm Eng 106:1157–1164. https://doi.org/10.1016/j.applthermaleng.2016.06.084

    Article  Google Scholar 

  13. Gai C, Dong Y, Zhang T (2013) The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresour Technol 127:298–305. https://doi.org/10.1016/j.biortech.2012.09.089

    Article  Google Scholar 

  14. Wang X, Hu M, Hu W et al (2016) Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Bioresour Technol 219:510–520. https://doi.org/10.1016/j.biortech.2016.07.136

    Article  Google Scholar 

  15. Weerachanchai P, Tangsathitkulchai C, Tansathitkulchai M (2010) Comparison of pyrolysis kinetic models for thermogravimetric analysis of biomass. Suranaree J Sci Technol 17:387–400

    Google Scholar 

  16. Vyazovkin S, Burnham AK, Criado JM et al (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  Google Scholar 

  17. Anca-Couce A, Berger A, Zobel N (2014) How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel 123:230–240. https://doi.org/10.1016/j.fuel.2014.01.014

    Article  Google Scholar 

  18. Munir S, Daood SS, Nimmo W et al (2009) Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol 100:1413–1418. https://doi.org/10.1016/j.biortech.2008.07.065

    Article  Google Scholar 

  19. Kaur R, Gera P, Jha MK, Bhaskar T (2018) Pyrolysis kinetics and thermodynamic parameters of castor ( Ricinus communis ) residue using thermogravimetric analysis. Bioresour Technol 250:422–428. https://doi.org/10.1016/j.biortech.2017.11.077

    Article  Google Scholar 

  20. Rony AH, Kong L, Lu W et al (2019) Kinetics, thermodynamics, and physical characterization of corn stover (Zea mays) for solar biomass pyrolysis potential analysis. Bioresour Technol 284:466–473. https://doi.org/10.1016/j.biortech.2019.03.049

    Article  Google Scholar 

  21. Gupta S, Gupta GK, Mondal MK (2020) Thermal degradation characteristics, kinetics, thermodynamic, and reaction mechanism analysis of pistachio shell pyrolysis for its bioenergy potential. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-01104-2

  22. Cai J, Xu D, Dong Z et al (2018) Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk. Renew Sust Energ Rev 82:2705–2715. https://doi.org/10.1016/j.rser.2017.09.113

    Article  Google Scholar 

  23. El-Sayed SA, Khairy M (2015) Effect of heating rate on the chemical kinetics of different biomass pyrolysis materials. Biofuels 6:157–170. https://doi.org/10.1080/17597269.2015.1065590

    Article  Google Scholar 

  24. Collins S, Ghodke P (2018) Kinetic parameter evaluation of groundnut shell pyrolysis through use of thermogravimetric analysis. J Environ Chem Eng 6:4736–4742. https://doi.org/10.1016/j.jece.2018.07.012

    Article  Google Scholar 

  25. da Silva JCG, Andersen SLF, Costa RL et al (2019) Bioenergetic potential of Ponkan peel waste (Citrus reticulata) pyrolysis by kinetic modelling and product characterization. Biomass Bioenergy 131:105401. https://doi.org/10.1016/j.biombioe.2019.105401

    Article  Google Scholar 

  26. Bhavanam A, Sastry RC (2015) Kinetic study of solid waste pyrolysis using distributed activation energy model. Bioresour Technol 178:126–131. https://doi.org/10.1016/j.biortech.2014.10.028

    Article  Google Scholar 

  27. Rasool T, Kumar S (2020) Kinetic and thermodynamic evaluation of pyrolysis of plant biomass using TGA. Mater Today Proc 21:2087–2095. https://doi.org/10.1016/j.matpr.2020.01.328

    Article  Google Scholar 

  28. Xiao R, Yang W, Cong X et al (2020) Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis. Energy 201:117537. https://doi.org/10.1016/j.energy.2020.117537

    Article  Google Scholar 

  29. Wanignon Ferdinand F, Van de Steene L, Kamenan Blaise K, Siaka T (2012) Prediction of pyrolysis oils higher heating value with gas chromatography–mass spectrometry. Fuel 96:141–145. https://doi.org/10.1016/j.fuel.2012.01.007

    Article  Google Scholar 

  30. Raj T, Kapoor M, Gaur R et al (2015) Physical and chemical characterization of various Indian agriculture residues for biofuels production. Energy Fuel 29:3111–3118. https://doi.org/10.1021/ef5027373

    Article  Google Scholar 

  31. Bano S, Negi YS (2017) Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr Polym 157:1041–1049. https://doi.org/10.1016/j.carbpol.2016.10.069

    Article  Google Scholar 

  32. Iyer KS, Balsora HK, Dixit SD et al (2020) Elucidation of thermal degradation model for low and high density polyethylene by statistical parameters. ChemistrySelect 5:14153–14160. https://doi.org/10.1002/slct.202003263

    Article  Google Scholar 

  33. Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis- a technological review. Energies 5:4952–5001. https://doi.org/10.3390/en5124952

    Article  Google Scholar 

  34. Sadhukhan AK, Gupta P, Saha RK (2009) Modelling of pyrolysis of large wood particles. Bioresour Technol 100:3134–3139. https://doi.org/10.1016/j.biortech.2009.01.007

    Article  Google Scholar 

  35. Aboulkas A, El Harfi K, El Bouadili A (2010) Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energy Convers Manag 51:1363–1369. https://doi.org/10.1016/j.enconman.2009.12.017

    Article  Google Scholar 

  36. Friedman HL (2007) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C Polym Symp 6:183–195. https://doi.org/10.1002/polc.5070060121

    Article  Google Scholar 

  37. Chee A, Lim R, Lai B et al (2016) Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose ( KAS ) method. Procedia Eng 148:1247–1251. https://doi.org/10.1016/j.proeng.2016.06.486

    Article  Google Scholar 

  38. Poletto M, Zattera AJ, Santana RMC (2012) Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresour Technol 126:7–12. https://doi.org/10.1016/j.biortech.2012.08.133

    Article  Google Scholar 

  39. Senum GI, Yang RT (1977) Rational approximations of the integral of the Arrhenius function. J Therm Anal 11:445–447. https://doi.org/10.1007/BF01903696

    Article  Google Scholar 

  40. Henry SJ, Wentworth SA (1969) Kinetic analysis of thermogravimetric data. Anal Chem 41:2060–2062. https://doi.org/10.1021/ac50159a046

    Article  Google Scholar 

  41. El-Sayed S (2019) Thermal decomposition, kinetics and combustion parameters determination for two different sizes of rice husk using TGA. Eng Agric Environ Food 12:460–469. https://doi.org/10.1016/j.eaef.2019.08.002

    Article  Google Scholar 

  42. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev 57:1126–1140. https://doi.org/10.1016/j.rser.2015.12.185

    Article  Google Scholar 

  43. Babu BV (2008) Biomass pyrolysis: a state-of-the-art review. Biofuels Bioprod Biorefin 2:393–414. https://doi.org/10.1002/bbb.92

    Article  Google Scholar 

  44. Siddiqi H, Kumari U, Biswas S et al (2020) A synergistic study of reaction kinetics and heat transfer with multi-component modelling approach for the pyrolysis of biomass waste. Energy 204:117933. https://doi.org/10.1016/j.energy.2020.117933

    Article  Google Scholar 

  45. Slopiecka K, Bartocci P, Fantozzi F (2011) Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy 97:491–497. https://doi.org/10.1016/j.apenergy.2011.12.056

    Article  Google Scholar 

  46. Gogoi M, Konwar K, Bhuyan N et al (2018) Assessments of pyrolysis kinetics and mechanisms of biomass residues using thermogravimetry. Bioresour Technol Rep 4:40–49. https://doi.org/10.1016/j.biteb.2018.08.016

    Article  Google Scholar 

  47. Ashraf A, Sattar H, Munir S (2019) A comparative applicability study of model-fitting and model-free kinetic analysis approaches to non-isothermal pyrolysis of coal and agricultural residues. Fuel 240:326–333. https://doi.org/10.1016/j.fuel.2018.11.149

    Article  Google Scholar 

  48. Özsin G, Pütün AE (2019) TGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis process. Energy Convers Manag 182:143–153. https://doi.org/10.1016/j.enconman.2018.12.060

    Article  Google Scholar 

  49. Mukherjee A, Das P, Minu K (2014) Thermogravimetric analysis and kinetic modelling studies of selected agro-residues and biodiesel industry wastes for pyrolytic conversion to bio-oil. Biomass Conv Bioref 4:259–268. https://doi.org/10.1007/s13399-013-0107-1

    Article  Google Scholar 

  50. Varma AK, Singh S, Rathore AK et al (2020) Investigation of kinetic and thermodynamic parameters for pyrolysis of peanut shell using thermogravimetric analysis. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00972-y

  51. Yeo JY, Chin BLF, Tan JK, Loh YS (2019) Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. J Energy Inst 92:27–37. https://doi.org/10.1016/j.joei.2017.12.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Bharuch Enviro infrastructure Limited (BEIL) Ankleshwar, Gujarat, India, for providing their support in this research.

Funding

One of the authors (AGC) would like to acknowledge the endowment seed grant (EF/2017-18/QE04-06) provided by the Manipal University Jaipur (MUJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Gupta Chakinala.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 783 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balsora, H.K., Kartik, S., Rainey, T.J. et al. Kinetic modelling for thermal decomposition of agricultural residues at different heating rates. Biomass Conv. Bioref. 13, 3281–3295 (2023). https://doi.org/10.1007/s13399-021-01382-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01382-4

Keywords

Navigation